
Business Systems

BASIC
Tonto personal information centre

Technical Publication TPU 12C November 1984

Item Code no. 983081

If you find any errors in this publication or would like to
make suggestions for improvement, then please write to.

The Technical Publications Unit
Room 532
British Telecom Merlin
Anzani House
Trinity Avenue
Felixstowe
IPl 1 8XB

Telephone Felixstowe (0394) 693787
Telex 987062 BTANZ

Whilst all possible care has been taken in the preparation
of this publication. Merlin accepts no responsibility for
any inaccuracies that may be found

Merlin reserves the right to make changes without notice
both to this publication and to the equipment which if
describes

C 1983 Sinclair Research Limited

Copyright C British Telecommunications pic 1984

Registered Office: 8i Newgate Street London EC1A 7AJ
Registered in England No 1800000

C International Computers Limited 1984

Registered Office

ICL House
Putney
London SW15 1SW

A company within the Standard Telephones and Cables
pic group

Printed by ICL Printing Services
Engineering Training Centre
icknieid Way West
Letchworth. Hens SG6 4AS

R51017/01

Microdrive is a trade mark of Sinclair Research Limited.
Xchange is a trade mark of Psion Limited.

Contents

This guide has four parts. Each part is divided into sections,
which are introduced on the first page of the part.

The quickest way to locate information on a particular topic
is to use the comprehensive index at the back of the guide.

Part A Introduction A-i

Te’ls you how a computer works and describes how you can use
the BASIC programming language to write programs. Also gives
you guidance on how to use this manual depending on your
previous knowledge.

Part B Beginner’s Guide B-i

Introduces you generally to all you need to know to write your
own programs in TONTO BASIC. Provides a step by step guide to
writing programs for the complete beginner and progresses to
complex programming techniques for experienced users.

Part C Concept Reference Guide C-i

Describes the concepts relating to TONTO BASIC and the
computer hardware. Related keywords are listed with examples
of use.

Part D Keyword Reference Guide D-i

Lists all the keywords you can use in TONTO BASIC statements
summarising their syntax and use.

Appendix 1 Syntax al

Defines the syntax of the TONTO BASIC programming language.

Appendix 2 TONTO BASIC reserved words a7

Lists all words, including keywords, which are reserved for
TONTO BASIC.

Appendix 3 Transferring data between applications all

Describes how you can exchange data between BASIC and other
applications.

Index

Part A I ntroduct i o n

1 How a computer works Al-1

Introduces you to the principles of how a computer works and
how computer programs are constructed and used. Tells you
about the BASIC programming language and briefly describes the
advantages of TONTO BASIC over other versions of BASIC.

2 How to use the manual A2-1

Tells you which parts of the manual are relevant to your level
of experience, from complete beginners to expert programmers.

A-i

1 How a computer works

A computer works by taking in information, working on that
information according to pre-determined instructions, and
giving out the results when its calculations are complete.

A COMPUTER
PROGRAM

A computer must be given its instructions in a very precise
and detailed way and in the exact order in which you want
those instructions carried out. Such a list of instructions is
called a program. You must also give the computer some
information on which to work according to your instructions,
this information is called data. For example in the
following statement

PRINT 2 + 2

PRINT is the instruction which tells the computer to display a
result

2 + 2 is the data supplied to the print instruction.

The result, as you would expect, is 4.

You will see later that data is often written into a program
but you can also write programs which prompt you for data as a
program is running, in which case you type the data in at the
keyboard as required.

WHAT IS BASIC? Programs have to be written in a language the computer can
understand. The TONTO uses the computer language (or
programing language) called BASIC, the language used by the
majority of microcomputers.

Vocabulary BASIC is quite easy to learn and use, as it has a total
vocabulary of only about 100 words, called keywords. Many
BASIC keywords are based on English words and their meanings
are obvious: for example, you have already seen PRINT used
in the example above; INPUT means to put information into a
program; RUN instructs the computer to execute (i.e. run) a
program.

Each keyword used in BASIC is an instruction (otherwise known
as a statement) which tells the computer to do something. A
series of statements and their related data constitute a
program.

Al-1

Syntax BASIC also has certain rules (equivalent to its own grammar)
called syntax, which you must obey for the TONTO to be able
to run your program. In the Keywords section, the syntax for
each statement is given under the heading Format. The syntax
for items used in several statement types is given in Appendix

Semantics Even with correct syntax, your program may not do exactly what
you intend it to do. Remember that a computer will always try
to follow your instructions even if the instructions are
wrong. To write useful programs you need to work out exactly
what you want to do and all the steps you need to achieve the
result you require.

TONTO BASIC
Features and
taciIities

TONTO BASIC has been designed to be even more user-friendly
than many earlier versions of BASIC. It offers advanced
program structuring, editing and operating facilities. It also
contains several features to simplify programming and can
often produce results where other versions of BASIC would
fail.

Error handling However, some programs will inevitably not work straight away
in which case you can use the error handling facilities of
TONTO BASIC to find your mistakes. Such mistakes are called
bugs. They can be such things as misspelt words, letters
instead of numbers or vice versa (e.g. I for 1, 0 for 0), or
missing quotation marks or punctuation. Such errors are
reported as syntax errors and you can easily correct them
using the editing facilities of TONTO BASIC. Remember to check
everything you type in very carefully before entering a line
into a program. This will help you to minimise errors.

Al-2

2 How to use t he manual

FOR BEGINNERS

FOR EXPERIENCED
PROGRAMMERS

FOR ALL

Part B of this manual is the Beginner's Guide which gives you
step by step instructions on how to write your own BASIC
programs. It introduces you to the computer hardware and what
you need to know before you start writing programs. The main
BASIC words are then introduced one by one with short program
examples to show you how they are used. At the end of each
section there are some questions for you to answer so that you
can check that you understand each section fully before moving
on to the next.

Sections 1 to 7 introduce you to the features and facilities
of BASIC, Section 8 defines the differences between TONTO
BASIC and other versions of BASIC, while the subsequent
sections explain the ideas introduced in the earlier sections
more fully and give you examples of more advanced programming
techniques.

You may wish to glance through the first seven sections of
Part B of this manual which contain the rudiments of BASIC
programming. The introduction to Part B gives a brief
description of the contents of each section which should help
you to select those sections relevant to your level of
experience.

If you are familiar with other versions of BASIC you may wish
to move straight to section 8 in Part B which defines the
differences between TONTO BASIC and other versions of BASIC.
Parts C and D of this manual provide detailed reference
information on the concepts and keywords respectively, used in
TONTO BASIC. Appendix 1 contains the syntax definitions of
TONTO BASIC. Appendix 2 lists reserved words in TONTO BASIC.
Appendix 3 describes how you can exchange data between BASIC
and other applications.

Although you do not need any previous experience of
programming or computers to use this manual, it is assumed
that you are familiar with the operation of the TONTO as
details of setting up, starting up and keyboard use are not
given in this manual. You should also have a copy of the

Handbook

Handy for reference purposes.

A2-1

Part B Beginner’s Guide

1 Getting started Bl-1

Introduces you to the features of the TONTO that you will neea
to use in BASIC.

2 Instructing the computer B2-1

Describes in simple terms how you put information (in this
case, numbers) into the TONTO, how the computer stores your
information and how you can tell the computer to work on your
information and output the results you want. Introduces tne
BASIC keywords you can use to input, edit and output a simple
program

3 Characters and strings B3-1

As section 2, but using character strings (sequences of
letters, digits or symbols) as your input information.
Introduces some of the keywords you use to handle data in the
form of strings

4 Loops and decisions B4-1

Tells you how to use loops to reduce the number of
instructions you need to give the computer if you want to do
the same thing more than once in a program. Also describes how
you can instruct the computer to make decisions by comparing
information and then doing different things according to the
results, using the IF statement

5 Developing programing skills B5-1

Recaps the previous sections and introduces some techniques to
make programming easier. Tells you how to save and load
programs using microdrive cartridges. Introduces files and
channels for data storage and retrieval.

6 Arrays and FOR loops B6-1

Tells you how to use arrays to simplify the handling of large
amounts of data, and describes the use of loops in more detail

7 Simple procedures B7-1

Introduces you to structured programming by using procedures
for separate tasks within a program

B-i

8 From BASIC to TONTO BASIC B8-1

Describes the differences between other versions of BASIC and
TONTO BASIC, and lists the features available in the TONTO
BASIC programming language

9 Data types, variables and identifiers B9-1

Gives you more information on the different types of variables
and their functions with examples of their use

10 Logic B10-1

Describes some of the decision making facilities of TONTO
BASIC using logical operators

11 Handling text strings Bll-1

Describes the facilities available in TONTO BASIC which you
can use in dealing with character strings

12 Screen output B12-1

Describes output on the TONTO using the screen for displaying
text, and introduces other screen facilities including use of
colour tones and windows

13 Arrays B13-1

Expands on section 6 and tells you more about handling larger
amounts of data using arrays with more than one dimension,
illustrated with numerous program examples

14 Program structure B14-1

Builds on the information in section 4, with more complex
descriptions of decision making and selection and the use of
loops to handle repetition

15 Procedures and functions B15-1

Describes the features of procedures and functions in more
detail and explains how to obtain values from them to use in
the main program body

16 Some techniques B16-1

Lists sample programs to illustrate some of the programming
techniques you have learned from the previous sections

B-i 1

1 Getting started

To use TONTO BASIC you must first load BASIC from either the
BASIC cartridge or the WELCOME cartridge in one of your
microdrives (see Handbook for details of how to load a
cartridge). Press the START key to obtain the Top Level
Menu, and select BASIC by typing 7, the number of the BASIC
option.

THE SCREEN When the TONTO enters BASIC, the copyright screen appears
followed after a few seconds by the start screen as
illustrated below:

If your screen does not look like this, refer to the problem
solving section in the Handbook. This should enable you to
resolve any difficulties.

In BASIC different parts of the screen are used for different
types of display. Details are given in section 8, Screen
Organi sation.

Bl-1

THE KEYBOARD You will already be familar with the TONTO keyboard if you
have used the TONTO for other applications before selecting
BASIC. Certain facilities of the keyboard which you need to
use in BASIC are described below and the whole keyboard layout

Interrupting
BASIC

The BREAK key sequence permits you to interrupt BASIC and
divert its attention back to you. It may be used when for
example:

- you want to stop a program
- you want to abandon changes you are making to a program

The BREAK key sequence has been made difficult to type
accidentally. To use BREAK

hold down!CTRLI then press SPACE'

then release CTRL: and .SPACEj1

The TONTO usually responds

not complete

If BREAK has been used to interrupt a running program, it
can be resumed by typing

CONTINUE <—»

Bl-2

If you have added or removed any lines from the program, or
made any other changes to the program before typing
CONTINUE, the TONTO replies

Shift

Bad line

Type the following:

REP A : PRINT INKEY$(-1); : END REP A

then press the key marked ENTER
___ I

Now everything that you type will appear at the top of the
screen. The only way to interrupt this is to use the BREAK
key sequence. Try it now!

As you can see there are two SHIFT keys on the keyboard. You
may use whichever is the most convenient.

Hold down one SHIFT key and press one of the letter keys.
The TONTO displays that letter in capitals (upper case).

Now hold down the SHIFT key and press another key, but not a
letter, RETURN, or one of the numbered keys. The TONTO
displays the symbol shown on the upper position of that key
(if there is one).

Without a SHIFT key you get small (lower case) letters or a
symbol in a lower position on the key.

Bl-3

Capitals lock You can lock capital letters on or off using the CAPS key
(SHIFT and number 7 on the numberpad).

CAPS LOCK works like a switch which affects only the letter
keys on the keyboard. Press it once, and the unshifted letter
keys are locked into a particular mode - upper case or lower
case.

Type some letter keys
Press the SHIFT key and hold SHIFT down while you press
7 on the numberpad.
Type some letter keys.

You can see that the mode changes and remains until you type
the CAPS LOCK sequence again.

While CAPS LOCK is on, the message CAPS is displayed in the
bottom left hand corner of the noticeboard.

Spacing The long key at the bottom of the keyboard generates spaces.
Use of spaces is very important in BASIC, as you will see in
the next section.

Bl-4

Rubbing out

Details of DEL and the other editing keys are given in the
Handbook. See also pB2-9 for details of editing.

Entering data When you have typed a complete message or instruction (for
example RUN), you must press the RETURN key to enter it
into the system for action.

Bl-5

Since this key is used so often it is shown by the symbol-*—*.
Test the <—1 key by typing:

PRINT "Correct"

If you made no mistakes, the system responds with:

Correct

Note that the RETURN (<-J) and ENTER (SHIFT/RETURN) keys
have equivalent effects except when entering lines in an
AUTO or EDIT command. See pages B5-2 and C2-17 for further
details.

Upper and BASIC recognises keywords whether they are in upper or
lower case lower case. For example the BASIC command to clear the screen

is CLS and can be typed in as:

CLS
cl s
clS

These are all correct and have the same effect. BASIC displays
some keywords partly in upper case, where the upper case
portion shows the allowed abbreviation in order for that
keyword to be recognised by the system. For example, the BASIC
keyword REPeat may be abbreviated to REP. Where a keyword
cannot be abbreviated it is displayed completely in upper
case.

Bl-6

Use of quotes The usual use of quotes (" or ') is to define a word or
sentence, that is a string of characters. Try:

PRINT "This works" —<

The computer responds with:

This works

The quotes are not printed on the screen but they indicate
that some text is to be printed and they define exactly what
it is - everything between the opening and closing quote
marks. If you wish to use the quote symbol itself in a string
of characters then the apostrophe symbol can be used to define
the string instead. For example:

PRINT 'The quote symbol is"’ *—‘

prints

The quote symbol is"

Common typing
errors

Zero and letter 'O'

The zero key is the last of the numeric digits at the top of
the keyboard, and the zero symbol is slightly thinner than the
letter 0. There is also a zero key on the numberpad at the
right hand side of the keyboard.

The letter 0 key is among the other letters. Be careful to use
the right symbol.

Similarly, avoid confusion between 1, the first of the numeric
digits at the top of the keyboard or on the numberpad, and the
letter I among the letters.

Keep shift down

When using a SHIFT key you must hold it down, press the
other key, and only then release the SHIFT key.

Note that the same rule applies to the control CTRL and
alternate ALT keys which are used in conjunction with other
keys, but you do not need these at present.

Bl-7

A COMPUTER
PROGRAM

Type the two simple instructions:

CLS *—1
PRINT 'Hello' -—*

Strictly speaking these instructions constitute a computer
program which is executed as soon as you press (ENTER) and
not stored for future use. However, it is the stored program
that is important in computing.

Type the same program with line numbers:

10 CLS
20 PRINT 'HELLO*

This time nothing happens externally except that the program
appears in the upper part of the screen. This means that the
program is accepted as having correct grammar or syntax,
that is, it conforms to the rules of BASIC, but it has not yet
been executed, merely stored. To make it work, type:

RUN

The distinction between direct commands for immediate action
and a stored sequence of instructions is discussed in the next
chapter. For the present you can experiment with the above
ideas and two more:

LIST

causes an internally stored program to be displayed (listed)
on the screen.

NEW *—»

causes an internally stored program to be deleted so that you
can type in a new one.

Bl-8

SELF TEST ON
SECTION 1

ANSWERS TO
SELF TEST ON
SECTION 1

You can score a maximum of 15 points from the following test.
Check your score with the answers on the next page.

1 In what circumstances might you use the BREAK sequence?

2 Name two differences between a SHIFT key and the CAPS
LOCK sequence

3 How can you delete a wrong character which you have just
typed?

4 What is the purpose of the RETURN key?

5 What symbol represents the RETURN key?

What is the effect of the commands in questions 6 to 9?

6 CLS *—'

7 RUN <—•

8 LIST *—■*

9 NEW ■*—’

10 Do keywords have the proper effect if you type them in
lower case?

11 What is the significance of those parts of keywords
which BASIC displays in upper case?

1 Use the BREAK sequence to:

interrupt a running program
abandon what you are typing

(2 points)

Bl-9

2 The SHIFT key

a) is only effective while you are holding it down
whereas the CAPS LOCK sequence stays effective
until you repeat it (1 point)

b) affects all the letter, digit and symbol keys, but
CAPS LOCK affects only letters (1 point)

3 The DEL key deletes any previous character just left
of the cursor

4 The*—'(RETURN) key causes a message or instruction to
be entered for action by the computer

5 We use •*—* for the RETURN key

6 CLS causes part or all of the screen to be cleared

7 RUN causes a stored program to be executed

8 LIST causes a stored program to be displayed on the
screen

9 NEW clears BASIC's store ready for a new program

10 Yes: BASIC keywords are recognised in upper or lower
case

11 The part of a keyword displayed in upper case is the
allowed abbreviation

CHECK YOUR 13 to 15 is very good. Carry on reading.
SCORE

11 or 12 is good, but re-read some parts of section 1.

9 or 10 is fair, but re-read some parts of section 1 and do
the test again.

Under 9. You should work carefully through section 1 again and
repeat the test.

Bl-10

2 Instructing the coaputer

To make the computer do something more useful than just
displaying the results of your single commands on the screen,
you have to give it information or data to work on. The
computer keeps this information in its store until you tell it
to use it. Data can be numbers or characters (see pB3-l for
how to deal with characters).

NAMES AND
PIGEON HOLES
FOR NUMBERS

When you put data into BASIC's store you need to be able to
find it again. The computer keeps your data in storage
areas which can be imagined as pigeon-holes.

Though you cannot see them, you need to label (i.e. to give
names to) each pigeon-hole so that you can tell the computer
where to find your data. Suppose you want to solve the
following problem.

Example

A dog breeder has 9 dogs to feed for 28 days, each at the rate
of one tin of 'Beefo' per day. Make the computer print (i.e.
display on the screen) the required number of tins.

One way of solving this problem would require three pigeon
holes for :

number of dogs
number of days
total number of tins

BASIC allows you to choose any names for pigeon-holes provided
you obey certain rules (see page B2-7) and you may choose as
shown:

dogs days tins

B2-1

You can make the computer set up a pigeon-hole, name it, and
store a number in it with a single instruction or statement
such as:

LET dogs = 9

This sets up an internal pigeon-hole, named dogs, and places
in it the number 9 thus:

dogs 9

The word LET has a special meaning in BASIC. It is called a
keyword.

BASIC has many other keywords which you will see later. You
must be careful to leave a space after LET (and all the
other BASIC keywords) and the word which follows it. Because
BASIC allows you to choose pigeon-hole names with great
freedom, LETdogs would be a valid pigeon-hole name.

The LET keyword is optional in TONTO BASIC and because of
this statements like:

LETdogs = 3

are valid. This would refer to a pigeon-hole called LETdogs.

Names, numbers and keywords should always be separated from
each other by spaces if they are not separated by special
characters.

Even if it were not necessary, a program line without proper
spacing is bad programming style. Machines with small memory
size may force programmers into such habits, but this is not a
problem with the TONTO.

You can check that your pigeon-hole exists internally by
typing:

PRINT dogs <—»

The screen should display what is in the pigeon-hole:

9

Again, be careful to put a space after PRINT.

B2-2

To solve the original problem, we can write a program which is
a sequence of statements. You can now understand the first
two:

LET dogs =9
LET days = 28 1

These cause two pigeon-holes to be set up, named, and given
numbers (i.e. values).

The next instruction multiplies the two numbers and places the
result in a new pigeon-hole called tins.

You might expect the statement to be:

LET tins = dogs x days

but BASIC uses the symbol * for multiply so we write the
statement thus:

LET tins = dogs * days ■*—1

The system carries out the following tasks:

1 It gets the values, 9 and 28, from the two pigeon holes
named dogs and days

2 It multiplies the value 9 by the value 28

3 It sets up a new pigeon-hole named tins

4 It stores the result of the multiplication in the
pigeon-hole named tins

This may seem very complicated but you need to understand the
stages involved in solving the problem. The effect can be
imagined very simply as shown:

dogs days 28 tins 252

The only remaining task is to make the computer print the
result, which you do by typing:

PRINT tins

B2-3

This causes the output

252

to be displayed on the screen.

In summary, the program:

LET dogs = 9 *—1
LET days = 28 <—•
LET tins = dogs * days +—1
PRINT tins <—»

causes the internal effects best imagined as three named
pigeon-holes containing values:

dogs 9 days 28 tins 252

and the output on the screen:

252

Of course, you could achieve this result more easily with a
calculator or a pencil and paper! You could do it quickly with
the TONTO by typing:

PRINT 9 * 28 *—»

which would give the answer 252 on the screen. However, the
ideas we have discussed are the essential starting points of
programming in BASIC. They are so essential that they occur in
many computer languages and have been given special names.

1 Names such as dogs, days and tins are called identifiers

2 A single instruction such as:

LET dogs = 9

is called a statement

3 The arrangement of name and associated pigeon-hole is
called a variable. The execution of the above
statement stores the value 9 in the pigeon-hole named
by the identifier dogs

B2-4

A statement such as:

LET dogs = 9

is an instruction for a highly dynamic internal process but
the printed text is static and it uses the = sign borrowed
from mathematics. It is better to think or say (but not type):

LET dogs store the value 9

and to think of the process having a right to left direction
(do not type this):

dogs <— 9

The use of - in a LET statement is not the same as the use
of • in mathematics. For example, if another dog turns up you
may wish to write:

LET dogs = dogs + 1

Mathematically, this is impossible but in terms of computer
operations it is simple. If the value of dogs before the
operation was 9, the value after the operation would be 10.
Test this by typing:

LET dogs = 9 ‘
PRINT dogs —•
LET dogs * dogs + 1 »—•
PRINT dogs

The output is:

9 from the first PRINT statement
10 from the second PRINT statement

proving that the final value in the pigeon-hole is as shown:

. dogs 10

A good way to understand what is happening to the pigeon-holes
(i.e. variables), is to do a dry run. Simply examine each
instruction in turn and write down the values which result
from it to show how the pigeon-holes are set up, given values,
and how they retain their values as the program is executed.

82-5

Thus:

LET dogs - 9 *—1
LET days = 28 <—•
LET tins = dogs * days
PRINT tins -*—*

dogs days tins

9
9
9
9

28
28
28

252
252

The output is:

252

You may notice from the examples so far that a variable name
has always been used first on the left hand side of a LET
statement. Once the variable is set up and has a value, the
corresponding variable name can be used on the right hand side
of a LET statement.

Suppose you wish to encourage a small child to save money. You
might give two bars of chocolate for every pound saved. If you
try to compute this as follows:

LET bars = pounds * 2 ■*-
PRINT bars w—»

you cannot do a dry run as the program stands, because you do
not know how many pounds have been saved.

pounds

LET bars = pounds * 2

We have made a deliberate error here in using the variable
pounds on the right of a LET statement without it having
been set up and given some value. The TONTO searches
internally for the variable pounds. It cannot find it, so it
concludes that there is an error in the program and gives an
error message. We say that the variable pounds has not been
initialised (given an initial value). The program works
properly if you do this first:

82-6

LET pounds = 7 -*—1
LET bars = pounds * 2

pounds

7
7

bars

14

The program works properly and gives the output:

14

I denti tiers
(Names)

You have used names for pigeon holes such as dogs, bars. There
are rules about the kinds of names you can choose as follows:

A name cannot include spaces

A name must start with a letter

A name must be made up from letters, digits and
(underscore)

allowing you to make names such as:

dog_food
nonth_yage_totai

- BASIC does not distinguish between upper and lower case
letters, so names like TINS and tins are the same.

- The maximum number of characters in a name is 255.

Names which are constructed according to these rules are
called identifiers. Identifiers are used for several
purposes in BASIC and you need to understand them. The rules
allow great freedom in the choice of names so you can make
your programs easier to understand. Names like total, count,
pens are more helpful than names like I, P_, Q.

B2-7

h STORED PROGRAM Typing statements without line numbers, as we have mostly done
so far, may produce the desired result: there are two reasons
however why this method is not satisfactory, except as a first
i ntroduction.

1 The program can only execute as fast as you can type;
this is not very impressive for a machine with the
computing power of the TONTO

2 The individual instructions are not stored after
execution so you cannot run the program again, or
correct an error, without re-typing the whole thing

Charles Babbage, a nineteenth centry computer pioneer, found
that a successful computer needs to store instructions (as
well as data) in internal pigeon-holes. These instructions may
then be executed rapidly in sequence without further human
i ntervention.

In a stored program each statement starts with a line number.
The line number tells BASIC that the statement should be kept.
It also determines the position of the statement in the
program as statements are executed in ascending sequence. You
could use any sequence of line numbers to number your program
lines but line numbers usually go up in tens so that you can
add extra instructions without renumbering the whole program
(see Insert a new line below). When you enter a line preceded
by a line number, the system checks the syntax of the line; if
correct the line moves to the top of the screen. When you have
entered all the program lines, you can execute the program by
typing RUM. Try this:

10 LET price = 15 ■*—1
20 LET pens = 7
30 LET cost = price ♦ pens <—*
40 PRINT cost <—>

Nothing happens externally yet, but the whole program is
stored internally. You make it work by typing:

RUN <—>

and the output:

105

appears.

The advantage of this arrangement is that you can edit or add
to the program with minimal extra typing.

B2-8

CHANGING A
PROGRAM

In section 5 you will see the full editing features of BASIC,
but even at this early stage you can do three things easily:

- replace a line
- insert a new line
- delete a line

Replace a line Suppose you wish to alter the previous program because the
price has changed to 20p for a pen. To change the price you
simply retype line 10.

10 LET price = 20 J

and this line replaces the previous line 10. Assuming the
other lines are still stored, test the program by typing:

RUN '

and the new answer, 140, should appear.

Insert a new
1 ine

Suppose you wish to insert a line just before the last one, to
print the words 'Total Cost'. This situation often arises so
we usually choose line numbers with intervals of 10 (i.e. 10,
20, 30 etc.) to allow space to insert extra lines.

To put in the extra line type:

35 PRINT “Total Cost" «—>

and it is inserted between lines 30 and 40. The system allows
line numbers in the range 1 to 32767 to allow plenty of
flexibility, as it is difficult to be sure in advance what
changes may be needed.

Now type:

RUN i

and the new output is:

Total Cost
140

B2-9

Delete a line You can delete a line by typing the line number, followed
by <—'. For example, to delete line 35 type:

35

The effect is to remove line 35 from your program, such that
line 40 now follows line 30.

OUTPUT The results of what you ask the computer to do are called the
output from the program. So far you have seen output
displayed on the screen as a result of the PRINT statements
you have used in your programs. As you will see later you can
also direct your output to a printer to obtain hard copy
(the results of your program printed on paper).

The PRINT
statement

The PRINT statement is very useful. You have seen how to use
PRINT to display words and numbers on the screen, to print
out the contents of variables and to do calculations on the
screen. You can PRINT text by using quotes or apostrophes:

PRINT “chocolate bars"

You can print the values of variables (i.e. contents of
pigeon-holes) by typing statements such as:

PRINT bars

without using quotes.

You will see later how very versatile the PRINT statement
can be in BASIC. It enables you to place text or other output
on the screen exactly where you want it. For now, these two
facilities are all you need:

- printing of text
- printing values of variables (contents of pigeon holes)

INPUT Input collectively describes the instructions (the program)
and the information (the data) you give the computer to work
on. This can be equated to a manufacturing process. For
example, a carpet-making machine needs wool as input. It then
makes carpets according to the current design.

82-10

design

wool

Carpet

Machine

If the wool is changed you may get a different carpet.

The same sort of relations exist in a computer, as illustrated
in the above diagrams. If you change the input data the output
data also changes.

However, when data is input into pigeon holes by means of
LET there are two disadvantages when you get beyond very
trivial programs:

writing LET statements is laborious
changing such input is also laborious

The INPUT
statement

You can arrange for data to be given to a program as it runs.
The INPUT statement causes the program to pause and wait for
you to type in something at the keyboard. First type:

NEW

so that the previous stored program (if it is still there) is
erased ready for this new one. Now type:

5 CLS —1
10 LET price = 15 '
20 PRINT “How many pens?" -*■—1
30 INPUT pens -
40 LET cost = price * pens *—1
50 PRINT cost -—-
RUN

Note the use of the CLS statement to give the program a
clean sheet, by removing the previous display.

The program pauses at line 30 for you to input your data and
you should type the number of pens you want, say:

4

B2-11

Do not forget the RETURN key. The output is:

60

The INPUT statement needs a variable name so that the system
knows where to put the data which comes in from your typing at
the keyboard. The effect of line 30 with the data you type in
is the same as a LET statement's effect: the INPUT
statement is more convenient for some purposes when
interaction between computer and user is desirable. However,
the LET statement and the INPUT statement are useful only
for modest amounts of data. We need something else to handle
larger amounts of data without creating pauses in the
execution of the program.

The READ
statement

TONTO BASIC, like most BASICS, provides another method of
input known as READing from DATA statements. We can re­
type the above program in a new form, to give the same effects
without any pauses. Try this:

NEW
10 CLS
20 READ price, pens <—1
30 LET cost = price * pens ■*—•
40 PRINT cost J
50 DATA 15,4 ^-1
RUN •

The output is:

60

as before.

Try running the program a second time. The message

At line 20 end of file

is output. This is explained below under the RESTORE
statement.

B2-12

The DATA
statement

The RESTORE
Statement

When line 10 is executed the system searches the program for
a DATA statement. It then uses the values in the DATA
statement for the variables in the READ statement in exactly
the same order. DATA statements are used by the program but
they are not executed in the sense that every other line is
executed in turn. DATA statements can go anywhere in a
program but they are normally placed at the end, out of the
way. Think of them as necessary to, but not really part of,
the active program. The rules about READ and DATA are as
fol 1ows:

1 All DATA statements are considered to be a single
sequence of items. So far these items have been numbers
but they could be anything that can appear on the right
hand side of a LET statement

2 Every time a READ statement is executed the necessary
values are copied from the DATA statement into the
variables named in the READ statement

3 The system keeps track of which items have been so
READ. If a program attempts to READ more items than
exist in all the DATA statements, an error is
si gnalled

The first time a program READS a value from a DATA statement
the value selected is the first value given in the lowest
numbered DATA statement. The next READ selects the next
value in that DATA statement if there is one, otherwise it
selects the first value of the next DATA statement, and so
on until the end of the program is reached.

The RESTORE statement is used to reset the point at which
the search for a value begins. Try adding

15 RESTORE

to the previous program. If you RUN this program now, it
will not produce an end of file message but will produce the
output

60

as it did the first time.

B2-13

RESTORE in this form tells the system to start its search
for DATA at the beginning of the program. You can start the
search from any line by specifying a line number. For example,
if you amend the previous program by typing

15 RESTORE 50 ■*—•
60 DATA 12, 3 <—J

and type RUN the output is

36

because the search for DATA starts at line 60.

SELF TEST ON You can score a maximum of 21 points from this test. Check
SECTION 2 your score with the answers on the next page.

1 How would you describe the concept of a pigeon-hole?

2 State two ways of creating an internal pigeon-hole and
storing a value in it (2 points)

3 How can you find out the value of an internal pigeon­
hole?

4 What is the usual technical name for such a pigeon-hole?

5 When does a pigeon-hole get its first value?

6 A variable is so called because its value can vary as a
program is executed. What is the usual way of causing
such a change?

7 The = sign in a LET statement does not mean ‘equals'
as in mathematics. What does it mean?

8 What happens when you enter an unnumbered statement?

9 What happens when you enter a numbered statement?

ID What is the purpose of quotes in a PRINT statement?

11 What happens when you do not use quotes in a PRINT
statement?

12 What does an INPUT statement do which a LET
statement does not?

13 What type of program statement is never executed?

B2-14

14 What is the purpose of a DATA statement?

15 What is another word for the name of a pigeon-hole
(variable name)?

16 Write down three valid identifiers which use just
letters; letters and digits; letters and underscores?
(3 points)

17 Why is the space bar especially important in BASIC?

18 Why are freely chosen identifiers important in
programming?

ANSWERS TO SELF 1 A pigeon-hole is like an internal store which you can
TEST ON SECTION name and put values into.
2

2 A LET statement which uses a particular name for the
first time causes a pigeon-hole to be created and named,
for example

LET count - 1 (1 point)

A READ statement which uses a name for the first time
has the same effect, for example

READ count (1 point)

3 You can find the value of a pigeon-hole with a PRINT
statement.

4 The technical name for a pigeon-hole is variable
because its value can vary as a program runs.

5 A variable gets its first value when it is first used in
a LET statement, INPUT statement or READ statement.

6 A change in the value of a variable is usually caused by
the execution of a LET statement.

7 The - sign in a LET statement represents an operation;

'Evaluate whatever is on the right hand side and place
it in the pigeon hole named on the left hand side',
that is 'Let the left hand side become equal to the
right hand side'.

8 An unnumbered statement is executed immediately.

B2-15

9 A numbered statement is not executed immediately. It is
stored, and displayed on the screen.

10 The quotes in a PRINT statement enclose text which is
to be printed.

11 When quotes are not used, you are printing out the value
of a variable.

12 An INPUT statement makes the program pause so that you
can type data at the keyboard.

13 DATA statements are never executed.

14 They are used to provide values for the variables in
READ statements.

15 The technical word for the name of a pigeon hole is
identifier.

16 Example answers:

day
day_23
day of week

17 The space bar is especially important for putting spaces
after or before keywords so that they cannot be taken as
identifiers (names) chosen by the user.

18 Freely chosen identifiers are important because they
help you to make programs easier to understand. Such
programs are less prone to errors and are more
adaptable.

CHECK YOUR SCORE
18 to 21 very good. Carry on reading.

16 to 17 good but re-read some parts of section two.

14 to 15 fair, but re-read some parts of section 2 and
do the test again.

Under 14 you should work carefully through section 2
again and repeat the test.

B2-16

EXERCISES ON
SECTION 2

1 Carry out a dry run to show the values of all variables
as each line of the following program is executed:

10 LET hours = 40 <—
20 LET rate = 3 <—•
30 wage = hours * rate -*—>
40 PRINT hours, rate, wage *—•

2 Write and test a program, similar to that of exercise 1
which computes the area of a carpet 3 metres in width
and 4 metres in length. Use the variable names: width,
length, area

3 Re-write the program of exercise 1 so that it uses two
INPUT statements instead of LET statements.

4 Re-write the program of exercise 1 so that the input
data (40 and 3) appears in a DATA statement instead of
a LET statement.

5 Re-write the solution to exercise 2 using a different
method of data input. Use READ and DATA if you
originally used LET and vice-versa.

6 Bill and Ben always argue about who is poorer, so they
decide to have a gamble. Each takes all the pound notes
out of his wallet and gives them to the other. Write a
program to simulate this entirely with LET and PRINT
statements. Use a third person, Sue, to hold Bill's
money while he accepts Ben's.

7 Re-write the program of exercise 6 so that a DATA
statement holds the two numbers to be exchanged.

B2-17

3 Characters and strings

Teachers sometimes wish to assess the reading ability needed
for particular books or classroom materials. Various tests are
used and some of these compute the average lengths of words
and sentences. We will introduce ideas about handling words or
character strings by examining simple ways of finding average
word lengths.

A character string is a sequence of letters, digits or other
symbols all of which may or may not be words. That is why the
term character string is used. It is usually abbreviated to
string. Strings are handled in ways similar to number
handling but, of course, we do not do the same operations on
them. We do not multiply or subtract strings. We join them,
separate them, search them and generally manipulate them as we
need.

NAMES AND
PIGEON HOLES
FOR STRINGS

You can put character strings into variables and use the
information just as you do with numbers but you must use a
different kind of label or name for a variable which contains
strings. If you intend to store (not all at once) words such
as:

FIRST SECOND THIRD
and

JANUARY FEBRUARY MARCH

you may choose to name two variables:

day_number$ months

Notice the dollar sign. Variables for strings are internally
different from those for numbers and BASIC needs to know which
is which. All names of variables for strings must end with
$. Otherwise the rules for choosing names are the same as
the rules for the names of numeric variables.

You can pronounce:

day_number$ as daynumberstring
months as monthstring

B3-1

The LET statement works in the same way as for numbers
except that you must enclose the letters or symbols used in
the string in quote marks. If you type:

LET day_number$ = "FIRST" «—1

an internal pigeon hole, named day_number$, will be set up
with FIRST in it thus:

day_number$ FIRST

The quote marks are not stored. They are used in the LET
statement to make it absolutely clear what is to be stored in
the variable. You can use a pair of apostrophes instead of a
pair of quote marks. You can check by typing:

PRINT day_number$ •*—'

and the screen should display what is in the variable:

FIRST

Identifiers
and String
Variables

Names of variables, such as:

day_number$
uordS
month$
phraseeS

are called string identifiers. The dollar symbol means that
the variables may store character strings. The dollar symbol
must always be at the end of the string identifier.

Variables of this
they contain only
program runs.

kind are called string variables because
character strings which may vary as a

The contents of string variables, like the contents of other
variables, are called values. Thus words like ’FIRST* and 'OF*
might be values of string variables named day numbers and
words.

B3-2

Lengths of
strings

BASIC makes it easy to find the length of, or number of
characters in, any string. You simply write, for example:

PRINT LEN(monthS) <-J

If the variable, months, contains SEPTEMBER the number 9 is
displayed. You can see the effect in a simple program:

MEy _ i
10 LET months = “SEPTEMBER"
20 PRINT LEN(monthS) '
RUN *

The screen displays:

9

LEN is a BASIC keyword.

An alternative method of achieving the same result uses both a
string variable and a numeric variable.

NEW —»
10 LET months = "SEPTEMBER" i
20 LET length = LEN(monthS)
30 PRINT length <
RUN

The screen displays:

9

as before, and two internal pigeon-holes contain the values
shown:

months SEPTEMBER length 9

Program design Suppose you wanted to write
length of the three words:

a program to find the average

FIRST, OF, FEBRUARY

B3-3

When problems become more complex, it is a good idea to
construct a program design before writing the program
itself. An example for the above program would be:

1 Store the three words in pigeon holes

2 Compute the lengths and store them

3 Compute the average

4 Print the result

Program

NEW *—1
10 LET day numbers = "FIRST" *—>
20 LET words = “OF" '
30 LET months = "FEBRUARY"
40 LET lengthl = LEM (day numbers) •*—1
50 LET length2 = LEN(wor^S)
60 LET length3 = LEN(nonthS)
70 LET SUM = lengthl ♦ length2 + length3 '
80 LET average = sum / 3 ■*—1
90 PRINT average •
RUN

The symbol I means divided by. The output or result of running
the program is simply:

5

and there are eight internal pigeon holes involved:

B3-4

If you think that is a lot of fuss for a fairly simple problem
you can easily shorten the program. The shortest version would
be a single line but it would be less easy to read. A
reasonable compromise uses the symbol A which stands for the
operation:

Join two strings

Now type:

NEW -*—1
10 LET day numbers = “FIRST"
20 LET words = “OF" *-»
30 LET months = “FEBRUARY" *-<
40 LET phraseS = day numbers A words A months <—1
50 LET length = LENfphraseS) <r—1
60 PRINT length / 3 J
RUN <—’

there are some different

mplification which is to use
rst three LET statements.

The output is 5 as before but
internal effects:

Type:

NEW -—1
10 READ day numberS, words, months -*—1
20 LET phraseS = day numbers A words A months *—1
30 LET length = LEN(phraseS) <—1
40 PRINT length / 3 <—1
50 DATA "FIRST", "OF", “FEBRUARY" J
RUN <-i

B3-5

CHARACTERS
AND NUMBERS

The internal effects of this version are exactly the same as
those of the previous one. READ causes the setting up of
internal pigeon holes with values in them, in a similar way to
LET.

You have seen that TONTO BASIC can store characters as well
as numbers in its pigeon-holes. Although you might never
realise, TONTO BASIC actually converts all characters into
numbers before storing them. These numbers are called
character codes.

For some advanced program you may want to take advantage of
this. TONTO BASIC provides two keywords to handle this
conversion:

CHR$ converts a character code into its respective
character. Try typing:

PRINT CHR$(66) <—J

and check that a B is displayed.

CODE converts a character into its character code. Try
typing:

PRINT CODE (“B“) ‘

and check that 66 is displayed.

Note that CHRS ends with S as it has a character value while
CODE, which has a numeric value, does not.

SELF TEST ON You can score a maximum of 10 points from the following test.
SECTION 3 Check your score with the answers on the next page.

1 What is a character string?

2 What is the usual abbreviation of the term character
string?

3 What distinguishes the name of a string variable?

4 How do some people pronounce a word such as ‘words'?

5 What keyword is used to find the number of characters in
a string?

6 What symbol is used to join two strings?

B3-6

ANSWERS TO
SELF TEST ON
SECTION 3

7 Spaces can be part of a string. How are the limits of a
string defined?

8 When a statement such as:

LET meat$ = "steak"

is executed, are the quotes stored?

9 What function will turn a suitable code number into a
letter?

10 What function will convert a letter into a character
code?

1 A character string is a sequence of characters (letters,
digits or other symbols).

2 The term character string is often abbreviated to
string.

3 A string variable name always ends with $.

4 Hames such as words are sometimes pronounced wordstring
or occasionally worddoll ar.

5 The keyword LEN will find the length or number of
characters in a string. For example, if the variable
meats has the value 'steak' then the statement:

PRINT LEN(meatS)

outputs 5.

6 The symbol for joining two strings is A.

7 The limits of a string are defined by quotes or
apostrophes.

8 The quotes are not part of the actual string and are not
stored.

9 The function is CHR$. You must use it with brackets as
in CHR$(66).

10 The function is CODE.

B3-7

CHECK YOUR
SCORE

9 or 10 is very good. Carry on reading.

7 or 8 is good but re-read some parts of section 3.

5 or 6 is fair but re-read some parts of section 3, and do the
test again.

Under 5, you should work carefully through section 3 again and
repeat the test.

EXERCISES ON
SECTION 3

1 Store the words 'Good' and ’day' in two separate
variables. Use a LET statement to join the values of
the two variables in a third variable. Print the result

2 Store the following words in four separate pigeon holes:

light let be there

Join the words to make a sentence adding spaces and a
full stop. Store the whole sentence in a variable,
sent$, and print the sentence and the total number of
characters it contains

3 Write a cipher program which encodes characters by
shifting up the alphabet (e.g. for A print B, for B
print C etc)

83-8

4 Loops and decisions

LOOPING

Thus far we have introduced the concept of a program as a set
of instructions executed in ascending order of line numbers.
While correct, this is very limiting for many applications.

Just imagine how tedious life would be if you had to say to a
builder, "Lay a paving stone there, and another there, and
another there..." instead of "Lay a path from here to the
house"!

The concept of repetition or looping is fundamental to
programming and is fortunately very simple to grasp.

There are only two points to note with loops:

1 An action is repeated a number of times

2 There is usually at least one condition for stopping the
repetition or exiting the loop

For example, referring back to the builder,

the action is: "Lay a paving stone",

the terminating conditions are: "When the path reaches the
house"

or: "When there are no more
paving stones"

or: "When it’s 5 o’clock"

The GOTO As TONTO BASIC executes statements in sequence, we have to
statement change this sequence to allow looping. One way to do this is

to use the GOTO statement.

Very simply, this statement causes TONTO BASIC to continue
executing instructions from a specified statement. This
program illustrates how it works:

B4-1

NEW *—1
10 CLS —J
20 PRINT "LINE 20"
30 PRINT “LINE 30“
40 PRINT “LINE 40“
RUN <

Note the output from this program, then add line:

25 GOTO 40

and run the program again.

As you can see, LINE 30 no longer appears on the screen.
This is because TONTO BASIC has executed lines 10, 20 and 25
then ‘jumped’ past line 30 to line 40.

By use of GOTO statements, BASIC can be made to execute
statements in virtually any order, however TONTO BASIC
provides clearer ways of doing the same thing.

Structured
Loops

The idea of a structured loop is the concept that was
discussed earlier in this section.

The action that is to be repeated is enclosed by two
statements:

REPEAT and END REPEAT

For example:

NEW —-1
10 CLS
20 REPEAT Today
30 PRINT “LAY A PAVING STONE"
40 END REPEAT Today <—«
50 PRINT “TIME TO STOP" '
RUN <—»

Additionally you will notice Today after the REPEAT and
END REPEAT keywords. This name is a special form of
identifier known as a loop identifier. It is used to help
TONTO BASIC relate the REPEAT to the END REPEAT in case
there is more than one loop in the program.

B4-2

Terminating
a Loop

If you run the above program you will find that it continually
prints LAY A PAYING STONE. The only way to stop it is to use
the BREAK key sequence described earlier.

Such an infinite loop is, for most practical purposes,
marginally less useful than no loop at all.

(A digression: very occasionally it can be useful to have a
loop in which the terminating condition is the BREAK key
sequence but this is not a good programming practice!)

It is very simple to terminate the loop; just add the line:

35 EXIT TODAY '
RUN <—J

Now the program outputs

LAY A PAVING STONE
TIME TO STOP

just as if lines 20, 35 and 40 were not there.

Conditional Although it may appear that you have gone full circle, you
statements have actually programmed a simple loop with the simplest of

terminating conditions:

Terminate the loop after executing it once

The true power of a loop becomes apparent when the terminating
condition is not fixed.

TONTO BASIC provides a simple way of making choices using a
construct called the IF statement.

As an example, add or modify lines 11, 12, 30, 31, 35, 50 and
60 to the previous example to produce the following program:

10 CLS 1
11 INPUT “How long is the path to be"; Length ■*—1
12 INPUT “How long is a paving stone-; Stone +—'
20 REPEAT Today «•—■*
25 IF Length < Stone THEN EXIT Tod<y
30 PRINT CHR$(O); —-•
31 LET Length = Length - Stone ■*—1
40 END REPEAT Today *—•
50 IF Length = 0 THEN PRINT \ "Path laid" *—1
60 IF Length <> 0 THEN PRINT \ “Gap at end" —•

B4-3

Now RUN the program with various values. You will see that a
simulation of the paving stones is displayed whose length
varies according to your input values.

Lines 25 and 31 are the key to this program:

25: Determines whether there is space for another paving
stone to be laid

31: Calculates the length of the unpaved path

Note: Many loops of the type just used can be replaced by
mathematical formulae. This is not in general a good practice
as it is always best to reflect the structure of the problem
in the program.

If you look closely at line 25 you can see that it consists of
four parts:

IF condition THEN required action

much as in the English:

IF it is raining THEN take an umbrella

Although the interpretation of raining can be subjective, a
TONTO BASIC condition can yield only one of TRUE or FALSE.

Lines 50 and 60 are again conditional statements which check
to see if a cutdown paving stone is required at the end of the
path.

It is interesting to note that only one of these conditions
can be true. TONTO BASIC provides a clearer way of writing
this as:

50 IF Length = 0 THEN '
54 PRINT \"Path laid" <—>
58 ELSE <—‘
60 PRINT \"Gap at end" J
70 END IF i

but this is described more fully later on.

B4-4

5 Developing programming skills

KNOWN GOOD
PRACTICE

You have already begun to work effectively with short
programs. You may have found the following practices are
nelpful:

Use of lower case for identifiers, names of variables
(pigeon holes), or REPeat structures etc., so that they
are easily distinguishable from keywords

Indenting of statements to show the content of a repeat
structure

Well-chosen identifiers reflecting what a variable or
repeat structure is used for

Editing a program by:

replacing a line
inserting a line
deleting a line

USING PROGRAMS
AS EXAMPLES

You have reached the stage where it is helpful to be able to
study programs to learn from them and to try to understand
what they do. The mechanics of actually running them should
now be well understood and in the following chapters we will
dispense with the constant repetition of:

NEW before each program
<—> at the end of each line
RUN to start each program

These must still be used when you wish to enter and run a
program. But their omission in the text enables you to see the
other details more clearly as you try to imagine what the
program does when it runs.

For example, the following program generates random upper case
letters until a Z appears. It does not show the words NEW or
RUN or the RETURN symbol but you still need to use them.

10 REPeat letters
20 num = RND(65 TO 90)
30 cap$ = CHRS(num)
40 PRINT cap$
50 IF cap$ = “Z" THEN EXIT letters
60 END REPeat letters

B5-1

In this and subsequent sections, programs and direct commands
are shown without the RETURN symbol, but you must use this
key as usual. You must also remember to use NEW and RUN as
necessary.

USEFUL
PROGRAMMING
TECHNIQUES

The REMARK
statement

This section describes a few simple techniques which will
help to make your programs easier to understand, write and
change.

Program lines which start with REM are ignored by the computer
and are solely for the convenience of the programmer or anyone
who may read the program. REM is short for remark and
REMark statements are useful for inserting notes into the
program to remind you what the program is doing. You can use a
REMark statement to name a program or to insert any
additional notes. REMark statements have no effect on the
program when it is running.

Automatic line It is tedious to enter line numbers manually. Instead you can
numbering type:

AUTO

and the TONTO replies with a line number:

100

If you now type in a program line and press RETURN, the line
you have typed appears at the top of the screen and the TONTO
prompts for the next line by outputting 110 on the screen.

If the line already exists, it will be displayed and you can
edit it.

To finish the automatic production of line numbers use the
BREAK sequence:

Hold down the CTRL and press the SPACE bar. This
produces a message of the form: line number, not complete.
For example,

130 not complete

and line 130 is not included in your program.

Alternatively you can use ENTER (SHIFT and RETURN) to send
the last line of input. This has the same effect as RETURN
but also terminates the AUTO command.

B5-2

If you make a mistake you can continue and EDIT the line
later.

If you want to start at some particular line number, say 600,
and use an increment other than 10, you can type for example:

AUTO 600,5

for an increment of 5.

Lines are then numbered 600, 605, 610, etc.

Editing a line To edit a line simply type EDIT followed by the line number,
for example:

EDIT 110

The line is then displayed with the cursor at the end thus:

110 PRINT ’First"

You can move the cursor using the cursor control keys:

—>- one place right
<— one place left

To delete a character to the left of the cursor press DEL.
This deletes the character before the cursor and then moves
the cursor over this space so you can type in a different
character, if desired.

To delete the character in the cursor position press the
REMOVE key sequence:

CTRL/DEL

This deletes the character under the cursor and closes up the
space.

To insert a character into a line, position the cursor where
you want the extra character and press

INS (SHIFT/DEL)

This moves all characters under or to the right of the cursor
one position to the right. This lets you insert another
character.

B5-3

If you wish to edit program lines above or below the current
line, use thetorcursor control keys to move the cursor up
or down respectively. You can then edit the new line using the
keys as above.

Further details of the cursor control keys and more advanced
editing facilities are given in the Concept Reference Guide
under Data Entry.

NAMING AND
SAVING PROGRAMS

When you write and enter programs of more than a few lines you
might want to save them on a microdrive cartridge for future
use.

Using
Microdrives

Before you use a new Microdrive cartridge it must be
formatted. Follow the instructions in the Handbook. The choice
of name for the cartridge follows the same rules as for BASIC
identifiers but is limited to only 8 characters. It is a good
idea to write the name on one of the supplied sticky labels
and attach this to the cartridge.

WARNING
If you format a cartridge which holds programs and/or data,
ALL the programs and/or data will be lost.

Saving programs When you have typed in a complete program and entered it into
the computer, for example the path program on page B4-3, you
can save it on a microdrive by inserting a cartridge in the
left hand drive and typing:

SAVE »dvl_path

The program is saved in a Microdrive file called path. You
may choose a Microdrive file name for your program provided
that the name is no more than 12 characters long and follows
the rules for a BASIC identifier. There must not be a file of
that name on the cartridge already.

Deleting
programs

The program named above can be deleted by:

DELETE »dvl_path

B5-4

LIST

Loadi ng
programs

You can load your program again from the left hand drive by
typi ng:

LOAD ndvl_path

You can run the program after it has been loaded by typing

RUN

Instead of using LOAD followed by RUN you can combine the
two operations in one command:

LRUN MDVl_path

The program loads and executes immediately after loading.

So far you have used MDV1_ which refers to the left hand
microdrive. If you want to use the right hand drive use
MDV2_ in place of MDV1_

Examining
programs

To check a program after it has been loaded type:

Merging
programs

and the whole program is listed on the screen. If you wish to
look at only part of the program, say lines 10 to 50, type:

LIST 10 to 50

The display can be stopped, and subsequently restarted, at any
time by using the space bar; or abandoned using the BREAK
sequence.

Suppose that you have two programs saved on microdrive 1 as
progl and prog2 where:

progl consists of 10 PRINT "First" and prog2 consists of 20
PR1NI "Second"

If you type:

LOAD »dvl_progl

fol lowed by

MERGE »dvl_prog2

B5-5

the two programs are merged into one. To verify this, type
LIST and you should see:

10 PRINT “First-
20 PRINT “Second"

If you MERGE a program, make sure that all its line numbers
are different from those of the program already in BASIC's
store. Otherwise it will overwrite some of the lines of the
first program.

This facility becomes very valuable as you become proficient
in handling procedures. It is then quite natural to build up a
program by adding procedures or functions to it.

FILES You have learned how to use microdrives for storing programs
and the commands LOAD and SAVE. You can use cartridges for
storing files as well as programs. The word file usually
means a sequence of data records, where a record is some set
of related information such as name, address and telephone
number.

The simplest possible type of file is just a sequence of
numbers. To illustrate the idea we will place the numbers 1 to
100 in a file called numbers. However, to be recognised by the
system the complete specification must be made up of two
parts:

device name where device name is Microdrive 1
or 2

file name etc. appended information

For example to create the file, numbers, on a cartridge in
Microdrive 1. The device name is:

MDY1_

and the appended information is just the file name:

numbers

So the complete specification is:

MDVl_numbers

File specifications have a maximum length of 12 characters.

B5-6

Channels It is possible for a program to use several files at once,
each referred to by an associated channel number. This can
be any integer in the range 0 to 15. A file is associated with
a channel number by using the OPEN statement or, if it is a
new file, OPEN NEW. For example you may choose channel 7 for
the numbers fiTe and write:

OPEN_NEW #7,mdv1_numbers

device
channel number
keyword

You can now refer to the file just by quoting the number #7.

The complete program is:

10 REHark Simple file
20 OPEN NEW #7, MDVlnurobers
30 FOR number = 1 TO 100
40 PRINT #7, number
50 ENO FOR number
60 CLOSE #7

Use of the FOR and END FOR keywords are explained in the
next section.

The PRINT statement causes the numbers to be output to the
cartridge file because #7 has been associated with it. The
CLOSE #7 statement is necessary because the system has some
internal work to do when the file has been used. It also
releases channel 7 for other possible uses.

You need to know that the file is correct and you can only be
certain of this if the file is read and checked. The necessary
keyword is OPEN_IN, otherwise the program for reading data
from a file is similar to the previous one.

10 REMark Reading a file
20 OPEN IN #6, NDVI numbers
30 FOR Ttem = 1 TO TOO
40 INPUT #6, number
50 PRINT ! number 1
60 END FOR Item
70 CLOSE #6

See page B12-1 for details of ! used as a print separator.

B5-7

The program should output the numbers 1 to 100, but only if
the cartridge containing the file numbers is still in
Microdrive MDV1.

Devices and
channels

GENERAL

SELF TEST ON
SECTION 5

A file of data on a microdrive is one example of a device. We
say that a file has been opened, although strictly we mean
that a device has been associated with a particular channel.
Any further necessary information has also been provided.
Certain devices have channels associated with them by TONTO
BASIC as below:

channel usual use

fO entering and editing BASIC commands
#1 PRINTing and INPUTting of data
fZ LISTing of programs

Be careful and methodical with cartridges. Always keep one
back-up copy and if you suspect any problem with a cartridge
or microdrive keep a second back-up copy. Computer
professionals very rarely lose data or programs. They know
that even the best machines or devices have occasional faults
and they allow for this.

You can score a maximum of 14 points from the following test.
Check your score with the answers on the following page.

1 Why are lower case letters preferred for the program
words you choose?

2 What is the purpose of indenting?

3 What should normally guide your choice of identifiers
for variables and loops?

4 Name three ways of editing a program in the computer's
main memory (3 points)

5 What should you remember to type at the end of every
command or program line to enter it?

B5-8

ANSWERS TO
SELF TEST ON
SECTION 5

6 What should you normally type before you enter a program
at the keyboard?

7 What must be at the beginning of every line to be stored
as part of a program?

8 What must you remember to type to make a program
execute?

9 What keyword enables you to put information into a
program yet has no effect on the execution?

10 Which keyword allows you to store a program on a
cartridge?

11 What is the difference between the LOAD AND LRUN
keywords? (2 points)

1 Lower case letters for variable names (or loop names)
contrast with the keywords which are at least partly
displayed in upper case

2 Indenting clarifies the content of loops (and other
structures)

3 Identifiers (names) should normally be chosen so that
they mean something, for example, count or words rather
than C or WS

4 You can edit a stored program by:

replacing a line
inserting a line
deleting a line (3 points)

5 The RETURN key should be used to enter a command or
program line

6 NEW*-'. This wipes out any previous BASIC program in
the TONTO and ensures that a new program which you enter
will not be merged with an old one

7 If you wish a line to be stored as part of a program
then you must use a line number

8 RUN followed by*—‘will cause a program to execute

9 REMark

B5-9

10 The keyword SAVE enables programs to be stored on
cartridges for subsequent retrieval

11 LOAD and LRUN both retrieve a program from
cartridge, but LRUN tells BASIC to run it (2 points)

CHECK YOUR
SCORE

12 to 14 is very good. Carry on reading

10 or 11 is good but re-read some parts of section 5

8 or 9 is fair but re-read some parts of section 5 and do the
test again

Under 8, you should re-read section 5 carefully and do the
test again

EXERCISES ON
SECTION 5

Re-write the following program using lower case letters
to give a better presentation. Add the words NEW and
RUN. Use line numbers and the ■«—’symbol just as you
would to enter and run a program. Use REMark to give
the program a name.

LET two$ = “TWO-
LET four$ = "FOUR-
LET sixS = twoS & fours
PRINT LEN(sixS)

Explain how two and four can produce 7

2 Use indenting, lower case letters, NEW, RUN, line
numbers and the J symbol to show how you would actually
enter and run the following program:

REPeat loop
letter code = RND(65 TO 90)

LET letterT = CHRS(letter_code)
PRINT letters
IF letters = ‘Z* THEN EXIT loop

END REPeat loop

B5-10

3 Rewrite the following program in better style, using
meaningful variable names and good presentation. Write
the program as you would enter it:

10 LET s = 0
20 REPeat total
30 LET n = RND(1 TO 6)
40 PRINT n !
50 LET s = s + n
60 If n = 6 THEN EXIT total
70 END REPeat total
80 PRINT s

Decide what the program does and then enter and run it
to check your decision

B5-11

6 Arrays and FOR loops

WHAT IS AN
ARRAY

You know that numbers or character strings can become values
of variables. You can picture this as numbers or words going
into internal pigeon holes.

Suppose, for example, you want to collect some statistics
about your finances over the last few months. Given that you
know how much you were paid each month, and all the bills you
have settled, you should be able to calculate how rich you're
getting each month.

We can assign pigeon-holes, as before, in a number of ways.

Using LET statements:

10 LET pay jan = 987.32
20 LET bilTs jan = 323.32
30 LET pay feb = 942.27
40 LET bilTs_feb = 876.11
50 LET pay mar = 966.39
60 LET bilTsjnar = 892.15
70 PRINT "surplus="; pay_jan - bills_jan
80 PRINT "surplus=“; pay_feb - bills_feb
90 PRINT "surplus="; payjnar - bills_mar

Using READ statements:

10 READ pay jan, pay feb, pay mar
20 READ bills jan, bTTls_feb,—bills_mar
30 PRINT "surplus*"; pay_jan - bills_jan
40 PRINT "surplus51"; pay_feb - b1lls_feb
50 PRINT "surplus="; pay mar - bills mar
60 DATA 987.32, 942.27, 766.39, 323.32, 876.11 892.15

As the quantity of data becomes large the advantages of READ
and DATA over LET are apparent, but if you wanted to
calculate your surplus pay over the last five years you would
still have a lot of typing to do!

The solution to this problem lies in revising the concept of
the data items. As opposed to having 6 data items, you
actually only have two:

pay and bills

B6-1

which you might write on paper as:

month pay bills

jan 987.23 323.32
feb 942.27 876.11
mar 966.39 892.15

Just as you might have drawn a table, so can BASIC although,
for historic reasons, it is called an array.

Anything can be stored in an array provided that all items
are of the same type.

The DIM
statement

In order to tell BASIC that you want to use a table or
array it is necessary to introduce a new statement called
the DIM statement, which tells BASIC the dimensions of the
table.

You will probably decide that your table is 3 columns by 3
rows, but pause a moment -

are bills really the same as pay?

Although they are both measured in the same currency, the two
are not of the same logical type, i.e. a bill is a liability,
your pay an asset.

Similarly, the month is not the same, and furthermore is not
even measured in numeric terms:

To tell BASIC to set up these tables you type:

DIM pay(3), bills (3), month$(3,10)

where the 3 indicates that there are to be three rows (one
for each month) in the table and the 10 means that the
maximum number of characters of a data item is ten.

Note that months is dimensioned differently. This is because
it is a string array. These are discussed a little later.

B6-2

Using an element of an array is simple. Instead of writing:

payfeb

you now write:

pay(2)

so you could rewrite the previous program using arrays.

Indexing arrays So far you have seen how to set up an array and refer to any
element. It may not seem very useful, but consider the
following program:

10 LET pay(2) = 44
20 LET month = 2
30 PRINT pay(month)

You will be familiar with lines 10 and 20 from previous
sections but line 30 introduces a new concept of array
indexing.

When BASIC looks at this statement, it works in the following
way:

- Firstly, BASIC finds PRINT and decides that it must print
something

- Secondly, BASIC finds pay and decides that it must print an
element of this table.

- Thirdly, BASIC replaces month by the value of the variable
month which is 2.

- Finally, BASIC prints the value of array element pay(2).

If you think about this, you will realise that we can ask
BASIC to refer to any element of the array simply by changing
the value of the variable month.

B6-3

Taking many of the features of the previous sections we can
now rewrite the earlier program very neatly by using month as
an index.

10 DIM pay(3), bills(3)
20 LET month = 1
30 REPeat get figures
40 READ payTmonth), bills(month)
50 PRINT “surplus3"; pay(month) - bills(month)
60 LET month = month + 1
70 IF month > 3 THEN EXIT get_figures
80 END REPeat get figures
90 DATA 987.32, 323.32, 942.27, 876.11, 966.39, 892.15

Curiously, this program is still longer than the previous one,
yet this is a small price for its flexibility. To change the
previous version of the program to handle 12 months requires a
lot of typing, the second requires only two lines to be
changed:

10 DIM pay(12), bills(12)
70 IF month > 12 THEN EXIT get_figures

in addition to adding more DATA statements.

FOR loops From your understanding of BASIC you will realise that lines
20, 30, 60, 70, 80 are all concerned with increasing the value
of month a certain number of times. In general, the outline
for this is:

LET variable = initial_value
REPeat loop

IF variable > highest_value THEN EXIT loop
various statements
LET variable = variable + some value

END REPeat loop

This is rather long-winded considering that BASIC programs
frequently use this construct, so TONTO BASIC allows you to
write it more simply:

FOR variable=initial_yalue TO highest_value STEP some_yalue
various statements

END FOR variable

86-4

For example:

FOR month = 1 TO 3 STEP 1
READ pay(month)
PRINT "tax:"; pay(month) * 32/100

END FOR month

To simplify things even further BASIC allows you to miss out
the STEP some_yalue portion and will assume it is 1.

Because month is
1oop it is often
loop variable.

used to control the exit condition of the
referred to as the control variable or

Try this program (remember to type NEW first):

10 CLS
20 FOR i = 1 TO 12
30 PRINT i,
40 END FOR i

and you will have just taught your TONTO to count!

String arrays As an array is just a group of related variables you may make
TONTO BASIC store strings in the same way as numbers. Just
as a string variable ends in a $, so must a string array
variable, so:

DIM months (3,10)

As mentioned earlier, this declaration of months has an extra
number. The last number or dimension of a string array tells
TONTO BASIC the maximum number of characters in each element
of the string array, so that it doesn't use more store than it
needs to.

There are two points to note here:

1 Although an array can hold strings you cannot refer to an
element using a string index. Pay ("bacon") doesn't make
much sense to anyone yet, and while you might make
something of pay ("Feb") t TONTO BASIC cannot.

B6-5

SELF TEST
ON SECTION 6

ANSWERS TO SELF
TEST ON SECTION
6

2 Do not confuse the extra number on the DIMension of
string arrays:

DIM months (3,10)

does not give you a table of strings three rows by ten
columns.

If you wish to think of it another way, it will give you
a 3 by 10 table of single characters.

You can score a maximum of 10 points from the following test.
Check your score with the answers on the next page.

1 What difficulty can arise when the data needed for a
program becomes numerous and you try to handle it without
arrays?

2 How do you tell TONTO BASIC what size your array will be?
(2 points)

3 What is the word for the number or variable that
distinguishes a particular element of an array?

4 Can you think of two ideas in ordinary life which
correspond to the concept of an array in programming? (2
points)

5 A REPeat loop needs a name so that you can EXIT to
its END properly. A FOR loop also has a name but what
other function does a FOR loop's name have?

6 What are the two phrases which are used to describe the
variable which is also the name of a FOR loop? (2 points)

7 The values of a loop variable change automatically as a
FOR loop is executed. Name one possible important use
of these values.

1 Apart from the problems of choosing many different names
for your variables, you cannot take advantage of loops
to process your data

2 You must declare an array giving its size (dimension)
using a DIM statement before you use it. (1 point)

B6-6

If the array is a string array you must add another
dimension to tell BASIC how long each string can be

(1 point)

3 The distinguishing number or variable is called an
index, though some people may call it a subscript.
Just remember how an index in a book lets you find the
required page

4 Houses in a street share the same street name but each
has its own number.

Beds in a hospital ward may share the name of the ward
but each bed may be numbered.

Cells in a prison block may have a common block name but
a different number.

Holes on a golf course (e.g. the fifth hole of Royal
Birkdale is the fifth element in an array of 18)

(2 points)

5 A FOR loop's name is also the name of the variable
which controls the loop

6 The two phrases for this variable are loop variable or
control variable (2 points)

7 The values of a loop variable may be used as subscripts
for array variable names. Thus, as the loop proceeds,
each array element is visited once

CHECK YOUR SCORE This test is more searching than the previous ones.

9 or 10 is excellent. Carry on reading.

7 or 8 is very good but think a bit more about some of
the ideas. Look at programs to see how they work.

5 or 6 is good but re-read some parts of section 6.

3 to 4 is fair but re-read some parts of section 6 and do
the test again.

Under 3, you should re-read section 6 carefully and do
the test again.

B6-7

EXERCISES ON
SECTION 6

1 Use a FOR loop to place one of four numbers 1,2,3,4
randomly in five array variables:

card(l), card(2), card(3), card(4), card(5)

It does not matter if some of the four numbers are
repeated. Use a second FOR loop to output the values of
the five card variables

2 Imagine that the four numbers 1,2,3,4 represent ‘Hearts',
'Clubs', 'Diamonds', 'Spades'. What extra program lines
would need to be inserted to get output in the form of
these words instead of numbers?

3 Use a FOR loop to place five random numbers in the
range 1 to 13 in an array of five variables:

card(l), card(2), card(3), card(4) and card (5)

Use a second FOR loop to output the values of the five
card variables

4 Imagine that the random numbers generated in exercise 3
represent cards. Write down the extra statements that
would cause the following output:

Number Output

1
2 to 10
11
12
13

the word 'Ace'
the actual number
the word 'Jack'
the word 'Queen*
the word 'King'

B6-8

7 Simple procedures

MODULARITY

WHAT ARE
PROCEDURES

When you are writing computer programs to solve complex
problems, it can be difficult to keep track of things. A
methodical problem-sol ver therefore divides a large or complex
job into smaller sections or tasks, and then divides these
tasks again into smaller tasks, and so on until each can be
easily tackled.

This is similar to the arrangement of complex human affairs.
Successful government depends on a delegation of
responsibility. The Prime Minister divides the work amongst
ministers, who divide it further through the Civil Service
until tasks can be done by individuals without further
division. There are complicating features such as common
services and interplay between the same and different levels,
but the hierarchical structure is the dominant one.

A good programmer also works in this way and an advanced
language like TONTO BASIC, which allows properly named, well
defined procedures to deal with individual tasks, is much more
helpful than older versions which do not have such features.

You can use procedures to avoid duplication in programs and
aid their readability. Use of procedures encourages block
structured programing. The idea is that a separately named
block of code should be written for a particular task. It
doesn’t matter where the block of code is in the program. If
it is there somewhere, the use of its name:

Activates the code

Returns control to the point in the program immediately
after that use

Such a block of code, composed of a sequence of statements
which define a particular task, is called a PROCedure. A
PROCedure is given a name and used when needed, as many
times as necessary during the execution of a program.

B7-1

If a procedure, sum, adds the numbers in an array, the scheme
is as shown below:

procedure definition procedure call

DEFine PROCedure sum
REMark Code to calculate sum
END DEFine

£
calculates sum

sum

In practice you can identify and name the separate tasks
within a job before the definition code is written. The name
is all you need to call the procedure so you can write the
main outline of the program before all the tasks are defined.

Alternatively, you can write and test the tasks first. If the
procedure works, you can then forget the details and just
remember the name and what it does.

USE OF
PROCEDURES

The following example could quite easily be written without
procedures but it shows how they can be used in a reasonably
simple context. Almost any task can be broken down in a
similar fashion, which means that you never have to worry
about more than, say, five to thirty lines at any one time. If
you can write thirty-line programs well and handle procedures,
you have the capability to write three-hundred-1ine programs.

PROCEDURES
IN PROGRAMS

Example

You can produce ready made * buzz-phrases * for politicians or
others who wish to give an impression of technological fluency
without actually knowing anything! Store the following words
in three arrays and then produce ten random buzz-phrases.

B7-2

adjecl$ adjec2$ noun$

Full fifth-generation systems
Systematic knowledge-based machines
Intel 1igent compatible computers
Control led cybernetic feedback
Automated user-friendly transputers
Synchronised parallei micro-chips
Functional learning capability
Optional adaptable progranmii ng
Positive modular packages
Balanced structured databases
Integrated logic-oriented spreadsheets
Coordinated file-oriented word-processors
Sophisticated standardi sed objectives

Store the words in three string arrays

2

3 Print the phrase

4 Repeat 2 and 3 ten times

To
of

write a program to produce ten buzzword phrases, the stages
the program are:

Choose three random numbers which will be the subscripts
of the array variables

Program
Analysis and
Design

Variables Identify three arrays of which the first two contain
adjectives or words used as adjectives (describing words). The
third array holds the nouns. There are 13 words in each
section and the longest word has 16 characters including a
hyphen.

Array Purpose

adjectl$(13,13)
adject2$(13,16)
noun$(13,15)

first adjectives
second adjectives
nouns

B7-3

Procedures Use three procedures to match the tasks identified.

store_data stores the three sets of thirteen words

get_random gets three random numbers in range 1 to 13

nake_phraee prints a phrase

Main program The program is very simple because the main work is done by
the procedures.

Program design

1 Declare (DIM) the arrays

2 Store_data

3 FOR ten phrases
get_rando»
make phrase
END

Program

10 REMark ************
20 REMark * Buzzword *
30 REMark ************
40 DIM adjecl$(13,13), adjec2$(13,16),noun$(13,15)
50 store data
60 FOR pKrase = 1 TO 10
70 get_randon
80 make_phrase
90 END FOR” phrase
95 STOP
100 REMark **************************
110 REMark * Procedure Definitions *
120 REMark **************************
130 DEFine PROCedure store_data
140 REMark *** procedure to store the buzzword data ***
150 FOR item = 1 TO 13
160 READ adjecl$(item), adjec2$(item),noun$(itern)
180 END FOR item
190 END DEFine
200 DEFine PROCedure get_random
210 REMark *** procedure to select the phrase ***
220 LET adl = RND(1 TO 13)
230 LET ad2 = RND(1 TO 13)
240 LET n = RND(1 TO 13)

B7-4

250 END DEFine
260 DEFine PROCedure make_phrase
270 REMark *** procedure to print out the phrase ***
280 PRINT ! adjecl$(adl) ! adjec2$(ad2) ! noun$(n)
290 END DEFine
300 REMark ****************
310 REMark * Program Data *
320 REMark ****************
330 DATA “Full", "fifth-generation","systems"
340 DATA "Systematic", "knowledge-based", “machines"
350 DATA “Intelligent", “compatible", “computers"
360 DATA "Controlled", "cybernetic", "feedback"
370 DATA "Automated", "user-friendly", “transputers"
380 DATA “Synchronised", "parallel", "micro-chips"
390 DATA "Functional", "learning", "capability"
400 DATA "Optional", "adaptable", “programming"
410 DATA "Positive", "modular", "packages"
420 DATA “Balanced", "structured", "databases"
430 DATA “Integrated", "logic-oriented", "spreadsheets"
440 DATA “Coordinated", "file-oriented", "word-processors"
450 DATA “Designed", "standardised", "objectives"

Sample output Automated fifth-generation capability
Functional learning packages
Full parallel objectives
Positive user-friendly spreadsheets
Intelligent file-oriented capability
Synchronised cybernetic transputers
Functional logic-oriented micro-chips
Positive parallel feedback
Balanced learning databases
Controlled cybernetic objectives

PASSING
INFORMATION TO
PROCEDURES

Suppose you wish to generate three random numbers in a given
range.

To define a procedure rand you need five items of information:

- names of three variables to receive the random numbers
•- the lower and upper limits of the numbers to be generated

B7-5

The procedure definition would be as follows

200 DEF PROC rand (rl, r2, r3, low, high)
210 REMark * procedure to select the number *
220 LET rl = RND (low TO high)
230 LET r2 = RND (low TO high)
240 LET r3 = RND (low TO high)
250 END DEF rand

rl, r2, r3, low and high are known as formal parameters.
As yet they have no value or type.

When this procedure is called these formal parameters take on
the values supplied by the calling statement. This action is
known as parameter substitution. The values, supplied by the
calling statement, are called the actual parameters.

For example, you might add the following program lines to
print three random numbers.

10 CLS
20 rand x, y, z, 15, 32
30 PRINT x, y, z

The substitution (or passing of parameters) can be thought of
as implicit LET statements thus:

201 LET low = 15 : high = 32
249 LET x=rl : y=r2 : z=r3

The advantages of procedures are:

1 You can use the same code more than once in the same
program or in others

2 You can break down a task into sub-tasks and write
procedures for each sub-task. This helps the analysis
and design

3 Procedures can be tested separately. This helps the
testing and debugging

4 Meaningful procedure names and clearly defined
beginnings and ends help to make a program readable

When you get used to properly named procedures with good
parameter facilities, you should find that your problem­
solving and programming powers are greatly enhanced.

B7-6

1

2

3

4

5

6

7

8

9

10

11

your score with the answers on the following page.
SELF TEST ON
SECTION 7

You can score a maximum of 14 points from the following test.
Check

How do we normally tackle the problem of great size and
complexity in human affairs?

How can this principle be applied in programming?

What are the two most obvious features of a simple
procedure definition? (2 points)

What are the two main effects of using a procedure name
to ■call* the procedure? (2 points)

What is the advantage of using procedure names in a main
program before the procedure definitions are written?

What is the advantage of writing a procedure definition
before using its name in a main program?

How can the use of procedures help a 'thirty-1ine-
programmer* to write much bigger programs?

Some programs use more memory in defining procedures,
but in what circumstances do procedures save memory
space?

■What two methods can be used to pass information between
a procedure and the main program? (2 points)

What are actual parameters?

What are formal parameters?

B7-7

ANSWERS TO 1 We normally break down large or complex jobs into
SELF TEST ON smaller tasks until they are small enough to be
SECTION 7 completed

2 This principle can be applied in programming by breaking
the total job down and writing a procedure for each task

3 A simple procedure is:

a separate block of code
properly named (2 points)

4 A procedure call ensures that:

the procedure is activated
control returns to just after the calling point

(2 points)

5 Procedure names can be used in a main program before the
procedures have been written. This enables you to think
about the whole job and get an overview without worrying
about the detail

6 If you write a procedure definition before using its
name you can test it and then when it works properly
forget the details. You need only remember its name and
what it does, not how it works

7 A programmer who can write up to thirty line programs
can break down a complex task into procedures in such a
way that none is more than thirty lines and most are
much less. In this way he need only worry about one bit
of the job at a time

8 The use of a procedure saves memory space if it is
necessary to call it more than once from different parts
of a program. The definition of a procedure only occurs
once but it can be called as often as necessary

B7-8

9 a) A procedure and program can use the same variables
(pigeon-holes). These variables can then be
updated by using either LET, READ and INPUT
staternents

b) A procedure and program may pass information to
each other by using parameter substitution. When
the procedure is activated BASIC copies the values
from the main program into the procedures formal
parameter variables. On completion of the
procedure these, possibly updated, values may be
copied back to the main programs variables

(2 points)

10 An actual parameter is the actual value passed from a
procedure call in a main program to a procedure

11 A formal parameter is a variable in a procedure
definition which represents a value or variable passed
to the procedure by the main program

CHECK YOUR
SCORE

This is a searching test. You may need more experience of
using procedures before the ideas can be fully appreciated.
But they are very powerful and, when understood, extremely
helpful ideas. They are worth whatever effort is necessary.

12 to 14 excellent. Read on with confidence

10 or 11 very good. Just check again on certain points

8 or 9 good but re-read some parts of section 7

6 or 7 fair but re-read some parts of section 7. Work
carefully through the programs writing down all changes in
variable values. Then do the test again

Under 6 read section 7 again. Take it slowly, working through
all the programs. These ideas may not be easy but they are
worth the effort. When you are ready, take the test again

B7-9

EXERCISES ON 1 Write a procedure which outputs one of the four suits:
SECTION 7 ‘Hearts’, ’Clubs’, ’Diamonds’, or 'Spades’. Call the

procedure five times to get five random suits

2 Write a program of exercise 1 using a number in the
range 1 to 4 as a parameter to determine the output
word. If you have already done this, then try writing
the program without parameters

3 Write a procedure which outputs the value of a card that
is a number in the range 2 to 10 or one of the words
’Ace’, ’Jack’, ‘Queen’, ’King’

4 Write a program which calls this procedure five times so
that five random values are output

5 Write the program of exercise 3 again using a number in
the range 1 to 13 as a parameter to be passed to the
procedure. If this was the method you used first time,
try writing the program without parameters

6 Write the most elegant program you can, using
procedures, to output four hands of five cards each. Do
not worry about duplicate cards. You can take elegance
to mean an appropriate mixture of readability,
shortness, adaptability and performance. Different
people and/or different circumstances will place
different importance on these qualities, which sometimes
work against each other

B7-10

8 F r o m B ASIC to T 0 N T 0 BASIC

INTRODUCTION

ALPHABETIC
COMPARISONS

If you are familiar with one of the earlier version of BASIC
you may be able to omit the first seven sections of Part B and
use this section as a bridge between what you know already and
the remaining sections. If you do this and still find areas of
difficulty.it may be helpful to backtrack a little into some
of the earlier sections.

If you have worked through the earlier sections this one
should be easy reading. You may find that, as v*el 1 as
introducing some new ideas, it gives an interesting slant on
the way BASIC is developing. Apart from its program
structuring facilities, TONTO BASIC advances the frontiers of
good screen presentation, editing, and operating facilities.
In short, it is a combination of user-friendliness and
computing power which has not existed before.

So when you make the transition to TONTO BASIC you are moving
not only to a more powerful, more helpful language, you are
also moving into a remarkably advanced computing environment.

The main features of TONTO BASIC and the features which
distinguish it from other BASICS are described below.

The usual simple arithmetic comparisons are possible. You can
wri te:

LET petl$ = "CAT-
LET pet2$ = "D0G“
IF petl$ < pet2$ THEN PRINT “meow”

The output will be meow because in this context the symbol <
means

is earlier than (i.e. nearer to A in the alphabet)

TONTO BASIC allows sensible comparisons to be made. For
example you would probably expect:

'cat' to come before 'DOG'

and

'ABC2‘ to come before 'ABC1O'

B8-1

difficulty.it

In TONTO BASIC if the string cannot be converted, an error is
reported.

LOGICAL
VARIABLES AND
SIMPLE
PROCEDURES

There is one other type of variable in TONTO BASIC or rather
the TONTO system makes it seem so. Consider the statement:

IF Windy THEN fly_kite

In other BASICS you might write:

IF w=l THEN GOSUB 300

In this case w=l is a condition or logical expression which is
either true or false. If it is true, a subroutine starting at
line 300 is executed. This subroutine may deal with kite
flying but you cannot tell from the above line. A careful
programmer would write:

IF w=l THEN GOSUB 300 : REM fly_kite

to make it more readable. But the TONTO BASIC statement is
readable as it stands. The identifier windy is interpreted as
true or false though it is actually a floating point variable.
A value of 1 or any non-zero value is taken as true. Zero is
taken as false. Thus the single word, windy, has the same
effect as a condition or logical expression.

The other word, fly_kitet is a procedure. It does a good job
similar to, but rather better than, GOSUB 300.

The following program conveys the idea of logical variables
and the simplest type of named procedure.

INPUT windy
IF windy THEN fly_kite
IF NOT windy THEN tidy shed
DEFine PROCedure fly kTte

PRINT “See it in the air."
END DEFine
DEFine PROCedure tidy shed

PRINT "Sort out rubKish."
END DEFine

B8-4

INPUT OUTPUT

0
1
2

-2

Sort out rubbish.
See it in the air
See it in the air
See it in the air

You can see that only zero is taken as meaning false. You
would not normally write procedures with only one action
statement, but the program illustrates the idea and syntax in
a very simple context. More is said about procedures later in
this section.

LET STATEMENTS In TONTO BASIC the LET keyword is optional but we use it in
this manual so that there is less chance of confusion caused
by the two possible uses of =. The meanings of = in:

LET count =3 (let count become 3)

and in

IF count = 3 THEN EXIT (if count is equal to 3)

are different and the LET helps to emphasise this. However,
if there are two, or a few, LET statements doing some simple
job such as setting initial values, an exception may be made.

For example:

20 LET first = 0
30 LET second = 1
40 LET third = 2

may be re-written as:

20 LET first = 0 : second = 1 : third = 2

without loss of clarity or style. It is also consistent with
the general concept of allowing short forms of other
constructions where they are used in simple ways.

The colon (:) is a valid statement separator and may be used
with other statements besides LET.

B8-5

THE BASIC This section describes the pixel-oriented features. A pixel is
SCREEN the smallest area of colour which can be displayed. The TONTO

has two screen modes which are described below:

Modes and
Pixels----

Low resolution
8 Colour Mode
256 pixel across, 256 down

High resolution
4 Colour Mode
512 pixel across, 256 down

BASIC operates only in high resolution mode and uses an area
of 480 x 240 pixels within the TONTO screen.

Pixels are addressed by the range of numbers:

0 - 479 across
and 0 - 239 down

COLOUR TONES The colour tones available are:

Colour code Display tone

0 black
1

2
3

dark grey

4 light grey
5

6 whi te
7

B8-6

Some of the screen presentation keywords are as follows:

TONTO SCREEN
ORGANISATION

INK colour

PAPER colour

foreground colour

background colour

When you first enter BASIC, and after NEW, the application
screen display is split into three areas called windows:

--------------------------480----------------------- ►

*1 and *2

•0

Notice board

The windows are identified by #0,#l and #2 so that you can
relate various effects to particular windows. For example:

CLS

clears window 1 (the default display window) so if you want
the bottom area cleared you must type:

CLS #0

If you want a different PAPER (background colour) type for
light grey

PAPER 4 : CLS

or

PAPER #2,4 : CLS #2

to clear window 2 to the background colour light grey.

The numbers #0, #1, #2 are called channel numbers. In this
particular case they enable you to direct certain effects to
the window of your choice. You will discover later that
channel numbers have many other uses, but for the moment note
that all of the following statements may have a channel
number. The third column shows the default channel - the one
chosen by the system if you do not specify one.

B8-7

Note that windows 1 and 2 completely overlap. The system
overlaps these windows so that more character positions per
line are available for program listings.

Statements or direct commands appear in window 0

Keyword Effect Default
Channel

AT Character position n
CLS Clears screen #1
CSIZE Character size #1
INK Foreground colour #1
PAPER Background colour #1
UNDER Underlines fl
WINDOW Changes existing window #1
LIST Lists program #2
PRINT Prints characters #1
INPUT Takes keyboard input #1
INKEYS Takes keyboard character #1

For more information about these keywords see Keywords (part
D). -------------

INPUT AND TONTO BASIC has the usual LET, INPUT, READ and DATA
OUTPUT statements for input. The PRINT statement handles most text

output in the usual way with the separators:

, tabulates output

; just separates - no formatting effect

\ forces new line

• intelligent space. Normally provides a space but not at
the start of line. If an item will not fit at the end of
a line it performs a new line operation

LOOPS You may be familiar with
exemplified as follows:

two types of repetitive loop in BASIC

B8-8

(a) Simulate 6 throws of an ordinary six-sided die.

10 FOR throw = 1 TO 6
20 PRINT RND(1 TO 6)
30 NEXT throw

(b) Simulate throws of a die until a six appears.

10 die = RND(1 TO 6)
20 PRINT die
30 IF die <> 6 then GOTO 10

Although these programs both work in TONTO BASIC we recommend
using the following equivalent programs instead. They do
exactly the same jobs as their BASIC counterparts. Although
program (b) is a little more complex there are good reasons
for preferring it.

(a) 10 FOR throw = 1 TO 6
20 PRINT RND(1 TO 6)
30 END FOR throw

(b) 10 REPeat throws
20 die = RND(1 TO 6)
30 PRINT die
40 If die = 6 THEN EXIT throws
50 END REPeat throws

REPeat loops It is logical to provide a structure for a loop which
terminates on a condition (REPeat loops) as well as those
which are controlled by a count.

The fundamental REPeat structure is:

REPeat identifier
statements

END REPeat identi fer

The EXIT The EXIT statement can be placed anywhere in the structure,
statement but it must be followed by an identifier to tell TONTO BASIC

which loop to exit; for example:

EXIT throws

transfers control to the statement after

END REPeat throws.

B8-9

This may seem like using a sledgehammer to crack the nut of
the simple program illustrated. However, the REPEAT
structure is very powerful. If you know other languages you
may see that it does the jobs of both REPeat and WHILE
structures and also copes with other, more awkward,
si tuations.

The TONTO BASIC REPeat loop
exit is made. The FOR loop,
ends with END, and its name
become clear later.

is named so that a correct clear
like all TONTO BASIC structures,
is given for reasons which will

You will also see later how these loop structures can be used
in simple or complex situations to match exactly what you need
to do. We mention only three more features of loops at this
stage. They will be familiar if you are an experienced user of
BASIC.

The STEP
keyword

Nested loops

The increment of the control variable of a FOR loop is
normally 1 but you can make it other values by using the STEP
keyword, as the examples show.

(a) 10 FOR even = 2 TO 10 STEP 2
20 PRINT ! even !
30 END FOR even

output is 2 4 6 8 10

(b) 10 FOR backwards = 9 TO 1 STEP - 1
20 PRINT ! backwards !
30 END FOR backwards

output is 9 8 7 6 5 4 3 2 1

The second feature is that loops can be nested. You may be
familiar with nested FOR loops. For example the following
program outputs four rows of ten crosses.

10 REMark Crosses
20 FOR row = 1 TO 4
30 PRINT ‘Row number*! row
40 FOR cross = 1 TO 10
50 PRINT "X“!
60 END FOR cross
70 PRINT
80 PRINT ’End of row number’! row
90 END FOR row

B8-10

output is

Row number 1
X X X X X X X X X X
End of row number 1
Row number 2
X X X X X X X X X X
End of row number 2
Row number 3
X X X X X X X X X X
End of row number 3
Row number 4
X X X X X X X X X X
End of row number 4

A big advantage of TONTO BASIC is that it has structures for
all purposes, not just FOR loops, and they can all be nested
one inside the other, reflecting the needs of a task. We can
put a REPeat loop in a FOR loop. The program below
produces scores of two dice in each row instead of crosses,
until a seven occurs.

10 REMark Dice rows
20 FOR row = 1 to 4
30 PRINT ’row number'! row
40 REPeat throws
50 LET diel = RND(1 TO 6)
60 LET die2 = RND(1 TO 6)
70 LET score = diel + die2
80 PRINT score!
90 IF score = 7 THEN EXIT throws

100 END REPeat throws
110 PRINT 'End of row number’ ! row
120 END FOR row

sample output:

Row number 1
8 11 6 3 7
End of row number 1
Row number 2
462945 12 7
End of row number 2
Row number 3
7
End of row number 3
Row number 4
6 2 4 9 9 7
End of row number 4

B8-11

Repetition The third feature of loops in TONTO BASIC allows more
flexibility in providing the range of values in a FOR loop.
The following program illustrates this by printing all the
non-prime numbers from 1 to 20.

10 REMark Divisible numbers
20 FOR num = 4, 6, 8 TO 10, 12, 14 TO 16, 18, 20
30 PRINT ! num!
40 END FOR num

More is said about handling repetition in a later section but
the features described above handle all but a few uncommon or
advanced situations.

DECISION
MAKING

You will have noticed the simple type of decision:

IF die = 6 THEN EXIT throws

The IF...THEN
statement

The IF...THEN statement is available in most BASICS but
TONTO BASIC offers extensions of this structure, plus a
completely new one for handling situations with more than two
alternative courses of action.

However, you may find the following long forms of IF...THEN
useful. They should explain themselves.

Program 1 IF...END IF

10 REMark Long form IF...END IF
20 LET sunny = RND(O TO 1)
30 IF sunny THEN
40 PRINT “Wear sunglasses"
50 PRINT “Go for walk“
60 END IF

Program 2 IF...ELSE...END IF

10 REMark Long form IF...ELSE...END IF
20 LET sunny = RND(0 TO 1)
30 IF sunny THEN
40 PRINT “Wear sunglasses"
50 PRINT "Go for walk"
60 ELSE
70 PRINT “Wear coat"
80 PRINT "Go to cinema"
90 END IF

B8-12

The separator, THEN, is optional in long forms or it can be
replaced by a colon in short forms. The long decision
structures have the same status as loops. You can nest them or
put other structures into them. When a single variable appears
where you expect a condition, the value zero is taken as false
and other values as true.

SUBROUTINES
AND PROCEDURES

Most BASICS have a GOSUB statement which may be used to
activate particular blocks of code called subroutines. The
GOSUB statement is unsatisfactory in a number of ways, so
TONTO BASIC offers in its place properly named procedures with
some very useful features.

Consider the following programs both of which draw a light
grey square of side length 60 pixel screen units, at a
position 180 across 100 down, on a dark grey background.

Program 1 Using GOSUB

10 LET colour = 4 : background = 2
20 LET across = 180
30 LET down = 100
40 LET side = 60
50 GOSUB 80
60 PRINT 'END*
65 STOP
70 REMark
80 PAPER background : CLS
90 0PEN#15, SCR

100 WIND0W#15, sTde, side, across, down
110 PAPER#15, colour : CLS#15
120 CL0SE#15
130 RETURN

Program 2 Using a procedure with parameters

10 square 4, 60, 180, 100, 2
20 PRINT ’END*
30 DEFine PROCedure square

(col our,si de,across,down,background)
40 PAPER background : CLS
50 0PEN#15, SCR_
60 WIND0W#15, side, side, across, down
70 PAPER#15, colour : CLS
80 CL0SE#15
90 END DEFine

B8-13

In Program 1 the values of colour, across, down and side are
fixed by LET statements before the GOSUB statement
activates lines 80 and 90. Control is then sent back by the
RETURN statement.

In Program 2 the values are given in the first line as
parameters in the procedure call, square, which activates the
procedure and at the same time provides the values it needs.

In its simplest form, a procedure has no parameters. It merely
separates a particular piece of code, though even in this
simpler use the procedure has an advantage over GOSUB
because it is properly named and properly isolated into a
self-contained unit.

The power and simplifying effects of procedures are more
obvious as programs get larger. What procedures do as programs
get larger is not so much make programming easier, as prevent
it from getting harder with increasing program size. The above
example just illustrates the way they work in a simple
context.

VOCABULARY The following examples indicate the range of vocabulary and
AND SYNTAX OF syntax of TONTO BASIC which has been covered in this and
TONTO BASIC earlier sections, and forms a foundation on which the

following parts of this manual build.

Example 1

The letters of a palindrome are given as single items in DATA
statements. The terminating item is an asterisk and you assume
no knowledge of the number of letters in the palindrome.
READ the letters into an array and print them backwards.
Some palindromes such as ‘MADAM I’M ADAM’ only work if spaces
and punctuation are ignored. The one used here works properly.

Program

10 REMark Palindromes
20 DIM text$(30)
30 LET count = 31
40 REPeat get_letters
50 READ characters
60 IF characters = **' THEN EXIT get_letters
70 LET count = count-1
80 LET textS(count) = characters
90 END REPeat get letters

100 PRINT texts(count TO 30)
110 DATA ’A’.’B'.’L’/E’,’ ’, *W , ‘A‘,’S’, ’ ’,T,’ ’/E’.'R’
120 DATA 'E’/ ,»,r/ ’,'S’,’A’,‘W’,* ’,’E’,’L’,‘B’,’A’,’*'

B8-14

Output is:

ABLE WAS I ERE I SAW ELBA

Example 2

The following program accepts a positive number as input and
converts it into an equivalent in Roman Numerals. It does not
generate the most elegant form; that is it produces IIII
rather than IV, VIIII instead of IX etc.

10 REMark Roman numbers
20 INPUT number
30 FOR type = 1 TO 7
40 READ letters, value
50 REPeat output
60 IF number < value : EXIT output
70 PRINT letters;
80 LET number = number - value
90 END REPeat output

100 END FOR type
110 DATA ’M',1000,‘D’,500,’C*,100,‘L’,50,’X*,10,'V,5,‘r,1
120 RESTORE

Sample output

Input Output

3289
100

4
1542

17

»ftCCLXXXYI 111
C
mi
MDXXXXII
XVII

You should study the above examples carefully, using dry runs
if necessary, until you are sure that you understand them.

B8-15

TONTO FEATURES
AND FACILITIES

In TONTO BASIC full structuring features are provided, so that
program elements either follow in sequence or fit into one
another neatly. All structures must be identified to the
system and named. There are many unifying and simplifying
features and many extra facilities.

Most of these are explained and illustrated in the remaining
sections of the Beginner’s Guide and are easier to read here
than in the Concept and Keyword Reference Guide (Parts C & D)
However, these sections do not give every technical detail or
exhaust every topic which they treat. There may be, therefore,
a few occasions when you need to consult the reference parts.
On the other hand some major advances are discussed in the
following sections. Few readers will need to use all of them
and you may find it helpful to omit certain parts, at least on
first reading.

SELF TEST ON 1 Write a program which will accept five words as data and
SECTION 8 then print them in reverse order

2 Write a program which will accept five words as data and
print the one which is first alphabetically

3 Modify the program of question 2 to print the word which is
last alphabetically

4 Write a program which will accept five words as data, then
search for a stated word and replace it, if it is found,
with another stated word

5 Write a program which completes the following line in a
variety of random ways

"The light.................. on the "

Using words chosen from

dances mol ten waves
gleams soft steel
leaps arci ng water

B8-16

ANSWERS TO
SELF TEST OH
SECTION 8

1 10 REMark Reverse Words
20 DIM word$(5,7)
30 FOR Num = 1 to 5 : READ wordS(num)
40 FOR Num = 5 to 1 STEP -1 : PRINT wordS(num)!
50 DATA “blue", "red", "magenta", "green", "cyan"

2 10 REMark Print First
20 LET firsts = “zzz"
30 FOR num = 1 to 5
40 READ wordS
50 IF wordS < firsts THEN LET firsts = wordS
60 END FOR num
65 PRINT firsts
70 DATA “one", "two", “three", "four", "five"

3 10 REMark Print Last
20 LET lasts = “ "
30 FOR num = 1 to 5
40 READ wordS
50 IF words > lasts THEN LET lasts = wordsS
60 END FOR num
65 PRINT lasts
70 DATA “one“, "two", "three", "four", “five"

4 10 REMark word replacement
20 DIM word$(5,16)
30 CLS
40 FOR num=l TO 5
50 READ wordS(num)
60 END FOR num
70 REPeat replaceword
80 PRINT "The words are:"
90 FOR num=l TO 5:PRINT IwordS(num);

100 PRINT
110 INPUT “Which word do you wish to replace?" ’targets
120 IF LEN(targetS)=O THEN EXIT replaceword
130 FOR num=l TO 5
140 IF word$(num)=target$ THEN
150 REPeat getword
160 INPUT "Enter the word you wish to replace"!

(words(num)!replaces
170 IF LEN(replaceS) < 17 THEN
180 word$(num)=replaceS
190 EXIT num
200 END IF
210 END REPeat getword
220 END IF
230 NEXT num
240 PRINT targets!“is not in my vocabulary"
250 END FOR num
260 END REPeat replaceword

B8-17

270 DATA "The**,“quick","sly"."brown","fox”

5 100 REMark The light...on the...
110 DIM word$ (3,3,6)
120 RESTORE 230
130 FOR type = 1 TO 3
140 FOR word = 1 TO 3
150 READ word$ (type, word)
160 END FOR word
170 END FOR type
180 CLS
190 FOR sentence = 1 TO 10
200 PRINT "The light"! word$(1,RND(1 TO 3)! "on the"
210 PRINT words (2,RND(1 TO 3))!word$(3,RND(1 TO 3))
220 END FOR sentence
230 DATA "dances", "gleams", "leaps"
240 DATA "molten", "soft", "arcing"
250 DATA "waves", "steel", “water"

88-18

9 Data types, variables and
identifiers

You now know that a program (a sequence of statements) usually
gets some data to work on (input) and produces some kind of
results (output). You also understand that there are internal
arrangements for storing this data. In order to avoid
unnecessary technical explanations, we have suggested that you
imagine data storage areas as pigeon-holes and that you choose
meaningful names for these pigeon-holes. For example, if it is
necessary to store a number which represents the score from
two simulated dice-throws, you imagine a pigeon-hole named
score which might contain a number such as 8.

Internally the pigeon-holes are numbered and the system
maintains a dictionary which connects particular names with
particular numbered pigeon-holes. We say that the name, score,
points to its particular pigeon-hole (by means of the in tern al
dictionary).

The whole arrangement is called a variable.

IDENTIFIERS AND What you see is the word score. The word score is a variable
VARIABLES name or identifier. It is what we see and it defines the

concept we need, in this case the result, 8, of throwing a
pair of dice. Because the identifier is what we see it becomes
the thing we talk or write or think about. We write about
score and its value at any particular moment. Rules for
identifiers and variables are listed below.

1 An identifier must begin with a letter and is a sequence
of:

upper or lower case letters
digits or underscore

2 An identifier may be up to 255 characters in length

3 An identifier cannot be the same as a BASIC keyword or
a TONTO BASIC reserved word (see Appendix 2)

B9-1

4 An integer variable name is an identifier with % as its
last character

5 A string variable name is an identifier with $ as its
last character

6 No other identifiers must use the symbols % or $

7 An identifier should be chosen so that it means
something to the reader. For BASIC it does not have any
meaning other than that it identifies variables

DATA TYPES There are four simple data types called floating point,
integer, string and logical which are explained below. We
talk about data types, rather than variable types, because
data can occur on its own (for example 3.4 or 'Blue hat') or
as the value of a variable. Different types of variables hold
corresponding types of data.

Floating point Examples of the use of floating point variables are:
variables

10 LET days = 24
20 LET sales = 3649.84
30 LET sales_per_day = sales/days
40 PRINT sales_per_day

The value of a floating point variable may be anything in the
range:

>10615 to + 10615 wjth 8 significant figures

Suppose in the above program sales were, exceptionally, only
3p. Change line 10 to:

20 LET sales = 0.03

The system, when relisting the line, changes this to:

20 LET sales = 3E-2

To interpret this, start with 3 or 3.0 and move the decimal
point -2 places, that is, two places left. This shows that:

3E-2 is the same as 0.03

After running the program, the average daily sales are shown
to be:

1.25E-3 which is the same as 0.00125

B9-2

Integer
variables

Numeric
functions

Numbers with an E are said to be in exponent form:

(mantissa) E (exponent) = (mantissa) x 10 to the power
(exponent)

Integer variables can have only whole number values in the
range -32768 to 32767. The following are examples of valid
integer variable names, which must end with %.

LET count* = 10
LET six tally* = RND(IO)
LET nun6er_3* = 3

The only disadvantage of integer variables, when whole numbers
are required, is the slightly misleading % symbol on the end
of the identifier. It has nothing to do with the concept of
percentage. It is just a convenient symbol tagged on to show
that the variable is an integer.

Using a function is a bit like making an omelette. You put in
an egg which is processed according to certain rules (the
recipe) and get out an omelette. For example, the function
INT takes any number as input and outputs the greatest whole
number that is less than or equal to the given number. For
positive values this is equivalent to the integer part of the
number. Anything which is input to a function is called a
parameter or argument. If you write:

PRINT INT(5.6)

5 is output. We say that 5.6 is the parameter and the
function returns the value 5. A function may have more than
one parameter. You have already met:

RND(1 TO 6)

which is a function with two parameters. But functions always
return exactly one value. This must be so, because you can put
functions into expressions. For example:

PRINT 2 * INT(5.6)

produces the output 10. It is an important property of
functions that you can use them in expressions. It therefore
follows that they must return a single value which is then
used in the expression. INT and RND are system functions;
they come with the system, but later you will see how to write
your own functions.

B9-3

Numeric
operations

Trigonometrical functions are dealt with in a later section.
Other common numeric functions are given in the list below.

Function Effect Example Returned values

ABS Absolute or ABS(7) 7
unsigned value ABSI-4.3) 4.3

I NT Integer part of IHTI2.4) 2
a floating INT(0.4) 0
point number 1NTI-2.7) -3

SORT Square root SQRT(2)
SQRT(16)
SQRTI2.6)

1.414214
4
1.612452

TONTO BASIC allows the usual mathematical operations. You may
notice that they are like functions with exactly two operands
each. It is also conventional in these cases to put an operand
on each side of the symbol. Sometimes the operation is denoted
by a symbol such as + or *. Sometimes the operation is denoted
by a keyword like DIV or MOD but there is no real
difference. Numeric operations have an order of priority. For
example, the result of:

PRINT 7 + 3*2

is 13 because the multiplication has a higher priority.
However:

PRINT (7 + 3)*2

outputs 20, because brackets override the usual priority. As
you will see later, so many things can be done with TONTO
BASIC expressions that a full statement about priority cannot
be made at this stage (see the Concept Reference Guide if you
want further information). The operations we now deal with
have the following order of priority:

highest raising to a power
multiplication and division (including DIV, MOD)

lowest add and subtract

B9-4

The symbols + and - are also used with only one operand which
simply denotes positive or negative. Symbols used in this way
have the highest priority of all and can only be overridden by
the use of brackets.

Finally, if two symbols have equal priority the leftmost
operation is performed first so that:

PRINT 7-2 + 5

causes the subtraction before the addition. This might be
important if you should ever deal with very large or very
small numbers.

The numeric operations you can use in TONTO SASIC are
tabulated below:

Operation Symbol Examples Results Notes

Add + 7+6.3 13.3

Subtract - 7-6.3 0.7

Muitiply * 3*2.1 6.3
2.1*1-3) -6.3

Di vi de / 7/2 3.5 Do not divide by
-17/5 -3.4 zero

Raise to /X 4A 1.5 8
power

Integer DIV -8 DIV 2 -4 Integers Only.
divi de 7 DIV 2 3 Do not divide by

-7 DIV 2 -4 zero

Hodulus MOD 13 MOO 5 3 Integers Only.
21 MOD 7 0 Do not take

-17 MOD 8 -7 modulus of zero

B9-5

Numeric Strictly speaking, a numeric expression is an expression which
expressions evaluates to a number and there are more possibilities than we

need to discuss here. TONTO BASIC allows you to do complex
things if you want to, but it also allows you to do simple
things in simple ways. In this section we concentrate on the
straightforward uses of mathematical features.

Basically, numeric expressions in TONTO BASIC are the same as
those of mathematics but you must put the whole expression in
the form of a sequence. Thus:

5 + 3
6-4

becomes in TONTO BASIC

(5 + 3)/(6-4)

Example 1

In algebra there is an equation to find one root of a
quadratic equation:

ax? + bx + c = 0

One solution in mathematical notation is:

x = -b H J b? -4ac
---------- 2a-------

If we start with the equation:

2x? - 3x + 1 = 0

The following program finds one solution.

10 READ a,b,c
20 PRINT 'Root is' I (-b + SQRTfb 2 - 4*a*c))/(2*a)
30 DATA 2,-3,1

B9-6

Example 2

In problems which need to simulate the dealing of cards, you
can make cards correspond to the numbers 1 to 52 as follows:

1 to 13 Ace, two king of hearts
14 to 26 Ace, two king of clubs
27 to 39 Ace, two king of diamonds
40 to 52 Ace, two king of spades

A particular card, say 23, can be identified as follows:

10 REM Card identification
20 LET card = 23
30 LET suit = (card-1) DIV 13
40 LET value = card MOD 13
50 IF value = 0 THEN LET value = 13
60 IF value = 1 THEN PRINT “Ace of
70 IF value >= 2 AND value <= 10 THEN PRINT value 1 “of
80 IF value = 11 THEN PRINT “Jack of
90 IF value = 12 THEN PRINT “Queen of

100 IF value = 13 THEN PRINT “King of “;
110 IF suit = 0 THEN PRINT “hearts"
120 IF suit = 1 THEN PRINT “clubs"
130 IF suit = 2 THEN PRINT “diamonds"
140 IF suit = 3 THEN PRINT “spades"

There is a new idea in this program: it is in line 70. The
meaning is clearly that the number is actually printed only if
two logical statements are true. These are:

value is greater than (>=2) or equal to 2
AND value is less than (>=10) or equal to 10

Cards outside this range are either aces or court cards and
must be treated differently.

Note also the use of ! in the PRINT statement to provide a
space and ; to ensure that output continues on the same line.

There are two groups of mathematical functions which we have
not discussed here. They are the trigonometric and
logarithmic. Types of functions are also fully defined in the
Concept Reference Guide.

B9-7

ones. For example, you can run the following program:

Logical
variables

Strictly speaking, TONTO BASIC does not allow logical
variables, but it allows you to use other variables as logical

10 REMark Logical Variable
20 LET hungry = 1
30 IF hungry THEN PRINT “Have a bun"

You expect a logical expression in line 30 but the numeric
variable, hungry is there on its own. The system interprets
the value, 1, of hungry as true and the output is:

Have a bun

If line 20 read:

Let hungry = 0

there would be no output. The system interprets zero as false
and all other values as true. That is useful, but you can
disguise the numeric quality of hungry by writing:

10 REMark Logical Variable
20 LET true =1 : false = 0
30 LET hungry = true
40 IF hungry THEN PRINT “Have a bun“

String
variables

There is much to be said about handling strings and string
variables and this is left to a separate chapter.

EXERCISES ON
SECTION 9

1 A rich oil dealer gambles by tossing a coin in the
following way. If it comes down heads he get 1. If it
comes down tails, he throws again but the possible
reward is doubled. This is repeated so that the rewards
are as shown.

THROW 12345 6 7
REWARDS 1 2 4 8 16 32 64

By simulating the game, try to decide what would be a
fair initial payment for each such game:

(a) if the player is limited to a maximum of seven
throws per game

(b) if there is no maximum number of throws

B9-8

2 Bill and Ben agree to gamble as follows. At a given
signal each divides his money into two halves and passes
one half to the other player. Each then divides his new
total and passes half to the other. Show what happens as
the game proceeds if Bill starts with 16p and Ben starts
with 64p.

3 What happens if the game is changed so that each hands
over an amount equal to half of what the other
possesses?

4 Write a program which forms random three-letter words
chosen from A, B, C, D and prints them until 'BAD'
appears

5 Modify the last program so that it terminates when any
real three letter word appears.

B9-9

10 Logic

WHY LOGIC

LOGICAL
OPERATORS

AMD

From what you have read in previous chapters, you will
probably agree that repetition, decision making and breaking
tasks into sub-tasks are major concepts in problem analysis,
program design and encoding programs. Two of these concepts,
repetition and decision making, need logical expressions such
as those in the following program lines:

IF score = 7 THEN EXIT throws
IF suit = 3 THEN PRINT “spades14

The first enables EXIT from a REPeat loop. The second is
simply a decision to do something or not. A mathematical
expression evaluates to one of millions of possible numeric
values. Similarly, a string expression can evaluate to
millions of possible strings of characters. You may find it
strange that logical expressions, for which great importance
is claimed, can evaluate to one of only two possible values:
true or false.

In the case of:

score = 7

this is obvious. Either score equals 7 or it doesn't. The
expression must be true or false, assuming that it's not
meaningless. It may be that you do not know the value at some
time, but that will be put right in due course.

You have to be a bit more careful of expressions involving
words such as OR, AND, and NOT but they are well worth
investigating - indeed, they are essential to good
programming. They will become even more important with the
trend towards other kinds of languages based more on precise
descriptions of what you require, rather than what the
computer must do.

The word AND in TONTO BASIC is like the word and in ordinary
English. Consider the following program.

10 REMark AND
20 PRINT "Enter two values, 1 for TRUE or 0 for FALSE"
30 INPUT raining, hole in roof
40 IF raining AND hole“in~roof THEN PRINT "Get wet"

BIO—1

As in real life, you will get wet if it is raining and there
is a hole in the roof. If one (or both) of the simple logical
variables

raining
hole_in_roof

is false then the compound logical expression

raining AND hole_in_roof

is also false. It takes two true values to make the whole
expression true. Only when the compound expression is true do
you get wet. This can be seen from the rules for AND below:

raining hole in roof raining AND hole in roof effect

FALSE FALSE FALSE DRY
FALSE TRUE FALSE DRY
TRUE FALSE FALSE DRY
TRUE TRUE TRUE WET

OR In every day life the word or is used in two ways. We can
illustrate the inclusive use of OR by thinking of a cricket
captain looking for players. He might ask "Can you bat or
bowl?" He would be pleased if a player could do just one thing
well but would also be pleased if someone could do both. So it
is in programming: a compound expression using OR is true if
either or both of the simple statements or values of a
variable are true. Try the following program.

10 REMark OR test
20 PRINT "Enter two values, 1 for TRUE or 0 for FALSE"
30 INPUT "Can you bat", batsman
40 INPUT "Can you bowl", bowler
50 IF batsman OR bowler THEN PRINT "In the team"

B10-2

The rules for OR are listed below:

batsman bowler batsman OR bowler effect

FALSE FALSE FALSE not in team
FALSE TRUE TRUE in the team
TRUE FALSE TRUE in the team
TRUE TRUE TRUE in the team

When the inclusive OR is used, a true value in either of the
simple statements produces a true value in the compound
expression. If Ian Botham, the England all-rounder, were to
answer the questions both as a bowler and as a batsman, both
simple statements would be true and so would the compound
expression. He would be in the team.

If you write 0 for false and 1 for true you get all the
possible combinations by counting in binary:

00 01 10 11

MOT and brackets The word NOT has the obvious meaning.

HOT true is the same as false
HOT false is the same as true

However you need to be careful. Suppose you hold a red
triangle and say that it is:

NOT red AND square

In English this may be ambiguous. If you mean:

(NOT red} AND a;.^re-

then for a red triangle the expression is false. If you mean:

NOT (red AND square}

B10-3

for a red triangle the whole expression is true. There must be
a rule in programming to make it clear what is meant. The rule
is that NOT takes precedence over AND so the
i nterpretation:

(NOT red) AND square

is the correct one. This is the same as:

NOT red AND square

To get the other interpretation you must use brackets. If you
need to use a complex logical expression, it is best to use
brackets and NOT if their usage naturally reflects what you
want. But you can if you wish always remove brackets by using
the following laws (attributed to Augustus De Morgan):

NOT (a AND b)
NOT (a OR b)

is the same as
is the same as

NOT a OR NOT b
NOT a AND NOT b

For example:

NOT (tall AND fair) is the same as
NOT tall OR NOT fair

NOT (hungry OR thirsty) is the same as
NOT hungry AND NOT thirsty

Test this by entering:

10 REMark NOT and brackets
20 PRINT "Enter two values, 1 for TRUE or 0 for FALSE"
30 INPUT "tall"; tall
40 INPUT "fair"; fair
50 IF NOT (tall AND fair) THEN PRINT “FIRST"
60 IF NOT tall OR NOT fair THEN PRINT "SECOND"

Whatever combination of numbers you give as input, the output
is always either two words or none, never one. This suggests
that the two compound logical expressions are equivalent.

B10-4

XOR - Exclusive
(TR---------------------

Suppose a golf professional wanted an assistant who could
either run the shop or give golf lessons. If an applicant
turned up with both abilities, he might not get the job
because the golf professional could fear that such an able
assistant would try to take over. He would accept a good
golfer who could not run the shop. He would also accept a poor
golfer who could run the shop. This is an exclusive OR
situation: either is acceptable but not both. The following
program would test applicants:

10 REMark XOR test
20 PRINT “Type 1 for yes or 0 for no"
30 INPUT “Can you run a shop?", shop
40 INPUT “Can you teach golf?", golf
50 IF shop XOR golf THEN print "Suitable"

The only combinations of answers that cause the output
"Suitable" are (0 and 1) or (1 and 0). The rules for XOR are
given below:

Able to run shop Able to teach Shop XOR teach effect

FALSE FALSE FALSE no job
FALSE TRUE TRUE gets the job
TRUE FALSE TRUE gets the job
TRUE TRUE FALSE no job

Priorities The order of priority for the logical operators is (highest
first):

NOT
AND
OR,XOR

For example the expression

rich OR tall AND fair

means the same as:

rich OR (tall AND fair)

B10-5

The AND operation is performed first. To prove that the two
logical expressions have identical effects run the following
program:

10 PRINT “Enter three values, 1 for TRUE or 0 for FALSE"
20 REHark Priorities
30 INPUT rich,tall,fair
40 IF rich OR tall AND fair THEN PRINT “YES"
50 IF rich OR (tall AND fair) THEN PRINT “AYE"

Whatever combination of three zeros or ones you input at line
30 the output is either nothing or:

YES
AYE

You can make sure that you test all possibilities by entering
data which forms eight three-digit binary numbers 000 to 111:

ooo ooi oio on loo 101 no in

EXERCISES ON
SECTION 10

1 Place ten numbers in a DATA statement. READ each
number and if it is greater than 20 then print it

2 Test all the numbers from 1 to 100 and print only those
which are perfect squares or divisible by 7

3 Toys are described as Safe (S), or Unsafe (U), Expensive
(E) or Cheap (C), and suitable for young children (Y),
teenagers (T) or all ages (A). A trio of letters encodes
the qualities of each toy. Place five such trios in a
DATA statement and then search it, printing only those
which are safe and suitable for young children

4 Modify program 3 to print those which are expensive and
not safe

5 Modify program 3 to print those which are safe, not
expensive and suitable for anyone

6 Try to modify program 3 to accept a condition and print
out those toys which satisfy this condition. Warning:
this is not an easy exercise!

B10-6

11 Handling text-strings

ASSIGNING
STRINGS

JOINING STRINGS

You have used string variables to store character strings and
you know that the rules for manipulating string variables or
string constants are not the same as those for numeric
variables or numeric constants. TONTO BASIC offers a full
range of facilities for manipulating character strings
effectively. In particular, the concept of string-slicing both
extends and simplifies the handling of substrings or slices of
a string.

Storage for string variables is allocated as it is required by
a program. For example, the lines:

10 LET words* = "LONG"
20 LET words* = “LONGER"
30 PRINT words*

causes the six letter word, LONGER, to be printed. The first
line causes space for four letters to be allocated, but this
allocation is overruled by the second line which requires
space for six characters.

It is, however, possible to dimension (that is, reserve space
for) string variables, in which case the maximum length
becomes defined, and the variable behaves in every way as an
array.

You may wish to construct records in data processing from a
number of sources. Suppose, for
teacher and you want to store a
student in Literature, History,
held in variables as shown:

example, that you are a
set of three marks for each
and Geography. The marks are

lit* I I f62 ‘ hist* 56 geog* 71

As part of student record keeping, you may wish to combine the
three string values into one six-character string called
marks*. You simply write:

LET mark* = lit* A hist* A geog*

Bl 1-1

You have created a further variable as shown:

mark$ 625671

But remember that you are dealing with a character string
which happens to be numbers, rather than an actual number.

COPY A STRING
SLICE

A string slice is part of a string. It may be anything from a
single character to the whole string. In order to identify the
string slice you need to know the positions of the required
characters.

Suppose you are constructing a children's game in which they
have to recognise a word hidden in a jumble of letters. Each
letter has an internal number (an index) corresponding to its
position in the string. Suppose the whole string is stored in
the variable jumbleS, and the clue is Big cat.

fumDIeS

You can see that the answer is defined by the numbers 6 to 9
which indicate where it is. You can extract the answer as
shown:

10 jumblej = “APQOLLIONATSUZ"
20 LET an$ = jumbleS(6 TO 9)
30 PRINT an$

Bll-2

REPLACE A Now suppose that you wish to change the hidden animal into a
STRING SLICE bull. You can write two extra lines:

40 LET jumble$(6 TO 9) = “BULL"
50 PRINT jumbleS

The output from the whole five-line program is:

LION
APQOLBULLATSUZ

Note: If you attempt to copy a string into a string-slice
which has insufficient length, the assignment may not give the
correct result.

If you wish to copy a string into string-slice, it is best to
ensure the destination string is long enough by padding it
first with spaces (see line 20 in the program below).

10 LET subjects = "ENGLISH MATHS COMPUTING"
20 LET students = “
30 LET student$(9 TO 13) = subject$(9 TO 13)

We say that BULL is a slice of the string APQOLBULLATSUZ. The
defining phrase:

(6 TO 9)

is called a slicer. It has other uses. Notice how the same
notation may be used on both sides of the LET statement. If
you want to refer to a single character it is clumsy to write:

jumble$(6 TO 6)

just to pick out the B so you can write instead:

jumbleS(6)

to refer to a single character.

COERCION Suppose you have a variable, marks holding a record of
examination marks. The slice giving the history mark may be
extracted and scaled up, perhaps because the history teacher
has been too strict in the marking. The following lines
extract the history mark:

10 LET markS = "625671"
20 LET hist$ = markS(3 TO 4)

Bll-3

The problem now is the value 56 of the variable, histS, is a
string of characters not numeric data. If you want to scale it
up by multiplying by, say, 1.125, the value of histS must be
converted to numeric data first. TONTO BASIC does tn is
conversion automatically when you type:

30 LET num = 1.125 * histS

Strictly speaking, it is illegal to mix data types in a LET
statement. It would be silly to write:

LET num = “LION“

and you would get an error message if you tried, but if you
wri te:

LET num = "56“

the system concludes that you want the number 56 to become the
value of num. In the program line 30 converts the string “56"
to the number 56 and multiplies it by 1.125 giving 63.

Now we should replace the old mark by the new mark but the new
mark is still the number 63. Before it can be inserted into
the original string it must be converted back to the string
"63". Again TONTO BASIC converts the number automatically when
you type:

40 LET markS(3 TO 4) = num
50 PRINT mark$

The output from the whole program is:

626371

which shows the history mark increased to 63.

The complete program is:

10 LET marks = “625671“
20 LET histS = mark$(3 TO 4)
30 LET num = 1.125 * histS
40 LET mark$(3 TO 4) = num
50 PRINT marks

In line 30 a string value was converted into numeric form so
that it could be multiplied; in line 40 a number was converted
into string form. This converting of data types is known as
type coercion.

Bll-4

SEARCHING A
STRING

OTHER STRING
FUNCTIONS

You can write the program more economically now you understand
both string-slicing and coercion:

10 LET mark$ = "625671"
20 LET mark$(3 TO 4) = 1.125 * mark$(3 TO 4)
30 PRINT marks

Again the output is the same.

If you have worked with other BASICS, you can appreciate the
simplicity and power of string-slicing and coercion.

You can search a string for a given substring. The following
program displays a jumble of letters and invites you to spot
the animal.

10 REM Animal Spotting
20 LET jumbleS = "SYNDICATE"
30 PRINT jumbleS
40 INPUT "What is the animal?"!an$
50 IF (an$ INSTR jumbleS) AND an$(l) = "C" AND LEN(anS) = 3
60 PRINT “Correct"
70 ELSE
80 PRINT “Not correct"
90 END IF

The expression (anS INSTR jumbleS) returns zero if the guess
is incorrect. If the quess is correct, the expression returns
the number which is the starting position of the string-slice,
in this case 6.

Because the expression can be treated as a logical expression,
the position of the string in a successful search can be
regarded as true: in an unsuccessful search it can be regarded
as false.

You have already met LEN which returns the length (number of
characters) of a string.

You may wish to repeat a particular string or character
several times. For example, if you wish to output a row of
asterisks, rather than actually enter forty asterisks in a
PRINT statement or organise a loop you can simply write:

PRINT FILLS ("*“,40)

Bll-5

COMPARING
STRINGS

Finally, it is possible to use the function CHR$ to convert
ASCII codes into string characters. For example:

PRINT CHR$(65)

outputs A.

A great deal of computing is concerned with organising data so
it can be searched quickly. Sometimes it is necessary to sort
it into alphabetical order. The basis of various sorting
processes is the facility for comparing two strings to see
which comes first. Because the letters A,B,C... are internally
coded as 65,66,67... it is natural to regard the following
statements as correct:

A is less than B
B is less than C

and because internal character by character comparison is
automatically provided:

CAT is less than DOG
CAN is less than CAT

For example, if you write:

IF "CAT" < "DOG” THEN PRINT “MEOW"

the output is:

MEOW

Similarly:

IF “DOG" > "CAT" THEN PRINT “WOOF"

gives the output:

WOOF

We use the comparison symbols of mathematics for string
comparisons as follows:

> Greater than - Case dependent comparison, numbers
compared in numerical order

< Less than - Case dependent comparison, numbers compared
in numerical order

Bl 1-6

Equals - Case dependent comparison, strings must be the
same

= = Similar - Strings must be 'almost' the same. Case
independent comparison, numbers compared in numerical
order

Greater than or equal to - Case dependent comparison,
numbers compared in numerical order

Less than or equal to - Case dependent comparison,
numbers compared in numerical order

Not equal to. Case dependent comparison, numbers compared
in numerical order

All the following logical statement expressions are both
permissible and true.

“ALF"
“KIT"
“KIT"
"KIT"
“PAT"
“LEN"
"PAT"

< “BEN"
> "BEN"
<= “LEN"
>= "KIT"
>= “LEN"
<= "LEN"
<> “PET"

So far, comparisons based simply on internal codes make sense,
but data is not always conveniently restricted to upper case
letters. We would like, for example:

Cat to be less than COT
and K2N to be less than K27N

In the second example above, the 2 is compared with the 27.

A simple character by character comparison based on internal
codes would not give these results, so TONTO BASIC allows a
move intelligent approach. The following program, with
suggested input and the output that results, illustrates the
rules for comparison of strings.

10 REMark comparisons
20 REPeat comp
30 INPUT "input a string" ! firsts
30 INPUT "input another string" ! seconds
40 IF firsts < seconds THEN PRINT "Less"
50 IF firsts > seconds THEN PRINT “Greater"
60 IF firsts = seconds THEN PRINT "Equal"
70 END REPeat comp

Bll-7

in put output

Cat COT Less
CAT CAT Equal
PET PETE Less
K6 K7 Less
K66 K7 Greater
K12N K6N Greater

£ Less

EXERCISES ON
SECTION 11

1 Place 12 letters, all different, in a string variable and
another six letters in a second string variable. Search
the first string for each of the six letters in turn
saying in each case whether it is found or not found

2 Repeat using single character arrays instead of strings.
Place twenty random upper case letters in a string and
list those which are repeated

3 Write a program to read a sample of text all in upper
case letters. Count the frequency of each letter and
print the results:

"GOVERNMENT IS A TRUST, AND THE OFFICERS OF THE
GOVERNMENT ARE TRUSTEES; AND BOTH THE TRUST AND THE
TRUSTEES ARE CREATED FOR THE BENEFIT OF THE PEOPLE.
HENRY CLAY, 1829."

4 Write a program to count the number of words in the
following text. A word is recognised because it starts
with a letter and is followed by a space, comma, or full
stop.

"THE REPORTS OF MY DEATH ARE GREATLY EXAGGERATED.
CABLE FROM MARK TWAIN TO THE ASSOCIATED PRESS, LONDON
1896."

5 Rewrite the last program, illustrating the use of logical
variables and procedures

Bl 1-8

12 Screen output

This section describes screen output on the TONTO under two
main headings.

The first describes the output of ordinary text under Simple
Printing. It explains the methods of displaying messages,
text, or numerical output, and introduces the concept of the
'intelligent* space - an example of combining ease of use with
very useful effects.

The second section describes the facilities you can use on the
screen of the TONTO under screen.

In designing and implementing the screen facilities of the
TONTO, we have always remembered that advanced features must
not imply incomprehensible keywords and syntax. Each keyword
has been carefully chosen to reflect the effect it causes.
WINDOW an area of the screen; PAPER defines the background
colour; INK determines the colour of what you put on the
paper.

SIMPLE PRINTING The keyword PRINT can be followed by a sequence of print
items. A print item may be any of:

text such as: "This is text"
variables such as: num, words
expressions such as: 3 * num, days & weeks

Print items may be mixed in any print statement but there must
be one or more print separators between each pair. Print
separators may be any of:

; Usually no effect on screen. When following the last data
item the automatic new line is suppressed

! An intelligent space normally inserts a space between
output items. If an item will not fit on the current line
it behaves as a new line symbol

, A tabulator causes the output to be tabulated in columns
of 8 characters

\ A new line symbol forces a new line

B12-1

Examples

The numbers 1, 2, 3 are some examples of legitimate print
items and are convenient for illustrating the effects of print
separators

Statement Effect

10 PRINT 1,2,3
10 PRINT 1!2!3!
10 PRINT 1\2\3

10 PRINT 1;2;3
10 PRINT “This is text"
10 LET word$ = " “
20 PRINT word$
10 LET num = 13
20 PRINT num
10 LET an$ = "yes"
20 PRINT “I say“! anS
10 PRINT “Sum is"! 4+2

1 2 3
1 2 3
1
2
3
123
This is text

moves print position

13

I say yes
Sum is 6

Simple layout You can position print output anywhere on the screen with the
AT command.

For example:

AT 10,15 : PRINT “This is on the 10th line in column 15“

but remember that the top left hand corner is AT 0,0

If you read the Keyword Reference Guide you may find it
difficult to reconcile the section on PRINT with the above
description. Two of the difficulties disappear if you
understand that:

- Text in quotes, variables and numbers are, strictly
speaking, expressions; they are the simplest (degenerate)
forms.

- Print separators are strictly classified as print items.

B12-2

SCREEN

Colour

Paper

The TONTO provides two screen modes: high resolution mode and
low resolution mode. TONTO BASIC always uses the high
resolution mode. This mode is characterised by the following:

The total screen available is 480 pixels wide and 200
pixels deep allowing 20 lines of 80 characters

A choice of four colours

A pixel is the smallest area of colour which can be displayed.

On the TONTO monochrome monitor, colours are displayed as
different intensities on a grey scale.

You can select a colour using the PAPER and INK keywords
with any of the following values:

Colour Codes

Value Displayed colour

0 black
1 black
2 dark grey
3 dark grey
4 light grey
5 light grey
6 white
7 white

For example INK 3 would give dark grey characters.

PAPER followed by a number specifies the background. For
example:

PAPER 2 dark grey

The colour is not visible until something else is done, for
example, the screen is cleared.

B12-3

Ink INK followed by a number specifies the colour for printing
characters. For example:

INK 7 white ink

The ink is changed for all subsequent output.

Cis CLS means clear the window to the current paper colour -like
a teacher cleaning a blackboard, except that it is electronic.

Windows You can request a window of any size anywhere on the screen,
however TONTO BASIC will align it with normal character
positions. The device name for a window is:

SCR_

A window is defined by four constant values, for example:

480x130a0x50

I
I L---------------- - -----------------------down value

'-- across value
---heighi

*-- width

The following program creates a window with the channel number
5, clears it to dark grey (code 2) and then closes it:

10 REMark Create a window
20 OPEN #5, SCR_480x200al8x50
30 PAPER #5,2 : CLS #5
60 CLOSE #5

Note that each window can have its own features such as paper,
ink, etc. The fact that a window has been opened does not mean
that it is the current default window.

You can change the position or shape of an opened window
without closing it and reopening it. Try adding two lines to
the previous program:

40 WINDOW #5,420,70,30,80
50 PAPER #5,4 : CLS #5

B12-4

SPECIAL
PRINTING

Csize

Under

EXERCISES ON
SECTION 12

Re-run the program and you will find a light grey window
within the original dark grey one. This light grey window is
now the one associated with channel 5, see below.

CSIZE enables you to alter the size of characters. For
example:

CSIZE 3,1

gives the largest possible characters and:

CSIZE 0,0

aives the smallest. The first number must be 0, 1, 2 or 3 and
determines the width. The second must be 0 or 1 and determines
the height. The normal sizes is:

CSIZE 0,0 20 lines of 80 characters

which is reinstated when a window is changed.

UNDER enables you to underline characters.

UNDER 1 underlines all subsequent output in the current
ink

UNDER 0 switches off underlining

1 Write a program which draws a 'Chess board' of six rows
of six squares

2 Place the numbers 1 to 35 in the squares starting at the
bottom left and place F for finish in the last square

B12-5

13 Arrays

In section 6 you were introduced to the concept of arrays as a
means of handling large amounts of data. This section recaps
what you have learned and introduces some more complex uses of
various types of array. In its simplest form an array is a
variable wnich contains more than one data item. The variable
has a single name and each data item contained in it is
referred to by a number.

Arrays can be one-dimensional (like a row of boxes):

or have two or more dimensions (like several rows of boxes). A
two-dimensional array can be represented as follows:

0.3

1.3

2.3

3.3

0.0

1 0

2.0

3.0
<0

0.2

1.2

2.2

3.2

4.2

Array dimensions are explained in greater detail below.

To set up an array you need to declare its name and give its
dimensions in a DIM statement. To refer to an item in an
array, all you need to do is to use the array name and the
index of the item (its position in the array).

Obviously the larger the number of data items you have in your
program, the greater the advantages of using arrays.

USING ARRAYS Suppose you are a prison governor and you have a new prison
block which is called the West Block. It is ready to receive
50 new prisoners. You need to know which prisoner (known by
his number) is in which cell. You could give each cell a name,
but it is simpler to give them numbers.

B13-1

In the following simulation, imagine just 5 prisoners with
numbers which you can put in a DATA statement:

DATA 50, 37, 86, 41, 32

Set up an array of variables which share the name west and are
distinguished by a number appended in brackets.

It is necessary to declare an array and give its dimensions
with a DIM statement

DIM west(5)

This enables BASIC to allocate the required storage area.
After the DIM statement has been executed, the five
variables can be used.

The convicts can be READ from the DATA statement into the
five array variables:

FOR cell = 1 TO 5 : READ westfeel 1)

You can add another FOR loop with a PRINT statement to
prove that the convicts are in the cells

*esi(1)

37

wcst(2) wcst(3| «csi(4)

32

wcsi(5)

The complete program is shown below:

10 REMark Prisoners
20 DIM west(5)
30 FOR cell = 1 TO 5 : READ westfeel 1)
40 FOR cell = 1 TO 5 : PRINT cell! westfeel 1)
50 REHark End of Program
60 DATA 50, 37, 86, 41, 32

B13-2

The output from the program is:

1 50
2 37
3 86
4 41
5 32

The numbers 1 to 5 are called
The array, west, is a numeric
array elements.

indices of the array, west.
array consisting of five numeric

You can replace line 40 by:

40 PRINT west

This outputs all the elements of the array;

0
50
37
86
41
32

The zero at the top of the list appears because the implied
index ranges from zero to the declared number. We show later
how useful the zero elements in arrays can be.

Note also that when a numeric array is DIMensioned its
elements are all given the value zero.

STRING ARRAYS String arrays are similar to numeric arrays but an extra
dimension in the DIM statement specifies the maximum length
of each string element in the array. Suppose that ten of the
top players at Royal Birkdale for the 1982 British Golf
Championship are denoted by their first names and placed in
DATA statements

DATA "Tom", "Graham", "Sevvy", "Jack", "Lee"
DATA “Nick", "Bernard", "Ben", "Greg", "Hal"

This requires ten different variable names, but if there were
a hundred or a thousand players the job would become
impossibly tedious. An array is a set of variables designed to
cope with problems of this kind. Each variable name consists
of two parts:

B13-3

- a name according to the usual rules for variables
- a numeric part called an index

Write the variable names as:

flat$(l), flat$(2), flat$(3)....etc

Before you can use the array variables you must tell the
system about the array and its dimensions:

DIM flatS(10,8)

This causes ten variables to be reserved for use in the
program. Each string element in the array may have up to eight
characters. DIM statements should usually be placed all
together near the beginning of the program. Once the array has
been declared in a DIM statement, all the elements of the
array can be used. One important advantage is that you can
give the numeric part (the index) as a numeric variable. You
can write:

FOR number = 1 TO 10 : READ flatS(number)

which would place the golfers in their flats.

flatS(i)

Tom

flatS(2)

Graham

HatS<3) ------------------------------------ flatS(iO)

You can refer to the variable in the usual way, but remember
to use the right index. Suppose that Tom and Sevvy wished to
exchange flats. In computing terms one of them, say Tom, would
have to move into a temporary flat to allow Sevvy time to
move. You can write:

LET tempS = flat$(l)
LET flatS(l) = flatS(3)
LET flatS(3) = temp$

: REMark Tom into temporary
: REMark Sevvy into flatS(l)
: REMark Tom into flat$(3)

The following program places the ten golfers in an array named
flats and prints the names of the occupants with their 'flat
numbers' (array indices) to prove that they are in residence.
The occupants of flats 1 and 3 then change places. The list of
occupants is then printed again to show that the exchange has
occurred.

B13-4

10 REMark Golfers* Flats
20 DIM flat$(10,8)
30 FOR number = 1 TO 10 : READ flat$(number)
40 printlist
50 exchange
60 printlist
70 STOP: REMark End of MAIN Program
80 DEFine PROCedure printlist
90 FOR num = 1 TO 10 : PRINT num! flatS(num)

100 END DEFine printlist
110 DEFine PROCedure exchange
120 LET tempi = flat$(l)
130 LET flati(l) = flati(3)
140 LET flati(3) = tempi
150 END DEFine exchange
160 DATA “Tom", "Graham**, "Sevvy", “Jack", “Lee"
170 DATA "Nick", "Bernard", “Ben", "Greg", "Hal"

output (line 40) output (line 60)

1 Tom 1 Sevvy
2 Graham 2 Graham
3 Sevvy 3 Tom
4 Jack 4 Jack
5 Lee 5 Lee
6 Nick 6 Nick
7 Bernhard 7 Bernhard
8 Ben 8 Ben
9 Greg 9 Greg

10 Hal 10 Hal

TWO
DIMENSIONAL
ARRAYS

Sometimes the nature of a problem suggests two dimensions such
as 3 floors of 10 flats rather than just a single row of 30.

Suppose that 20 or more golfers need flats and there is a
block of 30 flats divided into three floors of ten flats each.
A realistic method of representing the block would be with a
two-dimensional array. You can think of the thirty variables
as shown below:

B13-5

flatS(2.2) ----------------------------------- RatS(2.9)

second (2)

flaiS(i.2) ------------------------------------ HalS(l.9)

first (1)

fiatS(0.2) ------------------------------------ flatS(0.9)

ground (0)

Notice how the flats have been arranged to use element 0
(zero) of the array.

Assuming DATA statements with 30 names, a suitable way to
place the names in the flats is:

30 FOR floor = 0 TO 2
40 FOR num = 0 TO 9
50 READ flat$(floor, num)
60 END FOR num
70 END FOR floor

You also need a DIM statement:

20 DIM flat$(2,9,8)

which shows that the first index can be from 0 to 2 (floor
number) and the second index can be from 0 to 9 (room number).
The third number states the maximum number of characters in
each array element.

You can add a PRINT routine to show that the golfers are in
the flats and use letters for the golfer's names to save space
by changing the DIM statement accordingly.

10 REMark 30 Golfers
20 DIM flat$(2,9,l)
30 FOR floor = 0 TO 2
40 FOR num = 0 TO 9
50 READ flat$(floor,num) : REMark Golfers goes in
60 END FOR num
70 END FOR floor
80 REMark End of input

813-6

90 FOR floor = 0 TO 2
100 PRINT "Floor number"; floor
110 FOR num = 0 TO 9
120 PRINT ‘Flat* ! num ! flat$(floor,num)
130 END FOR num
140 END FOR floor
150 DATA “A“,“B",“C",“D",“E",“F","G","H",“I","J"
160 DATA “KM,"L","M“,“N","O","P">"Q“,"R","S","T“
170 DATA

The output starts:

Floor number 0
Flat OA
Flat IB
Flat 2C

and continues, giving the remaining 27 occupants.

ARRAY SLICING You may find this section hard to read, though it is
essentially the same concept as string-slicing. You will
probably need string-slicing if you get beyond the learning
stage of programming. The need for array-slicing is much rarer
and you may wish to omit this section, particularly on a first
reading.

We now simplify the golfers-in-flats problem so that we can
illustrate the concept of array slicing. The flats are
numbered 0 to 9 to keep to single digits and names are single
characters for reasons of space.

I.o 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

flats K L N 0 P 0 R S T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

<latS A ■ B c D E F G H 1 J

B13-7

Given the above values the following examples are array
si ices:

flat$(l,3) Means a single array element with value N
flat$(l,l TO 6) Means the six elements with values L M N

0 P Q

Array Element Vai ue

flat$(1,1) L
flatS(l,2) M
flatSl1,3) N
flat$(l,4) 0
flats!1,5) P
flat$(l,6) Q

flat$(l) Means flats (1,0 TO 9) - ten elements
with values K L M N 0 P Q R S T

In these examples a range of values of an index can be given
instead of a single value. If an index is missing completely
the complete range is assumed. In example 3 the second index
is missing and it is assumed by the system to be 0 TO 9.

The techniques of array slicing and string slicing are
similar, though the latter is more widely applicable.

EXERCISES ON
SECTION 13

1 SORTING

Place ten numbers in an array by reading from a DATA
statement. Search the array to find the lowest number.
Make this lowest number the value of the first element of
a new array. Replace it in the first array with a very
large number. Repeat this process making the second
lowest number the second value in the new array and so on
until you have a sorted array of numbers which should
then be printed.

2 SNAKES AND LADDERS

Represent a snakes and ladders game with a 100 element
numeric array. Each element should contain either:

zero

B13-8

or a number in the range 10 to 90 meaning that a player
should transfer to that number by going 'up a ladder'
or 'down a snake'

or the digits 1, 2, 3, etc. to denote a particular
player's position.

Set up six snakes and six ladders by placing numbers in
the array and simulate one 'solo' run by a single player
to test the game.

3 CROSSWORD BLANKS

4

columns

in which the black squares have a symmetrical pattern.
The pattern is said to have rotational symmetry because
rotation through 180 degrees would not change it.

Note that after rotation through 180 degrees, the square
in row 4, column 1 could become the square in row 2,
column 5. That is row 4, column 1 becomes row (5+1)-4,
column (5+D-l in a 5 x 5 grid.

Write a program to generate and display a symmetrical
pattern of this kind in a 5 x 5 and a 10 x 10 grid.

Modify the crossword pattern so that there are no
sequences, across or down, of fewer than four white
squares.

B13-9

5 CARD SHUFFLE

Cards are denoted by the numbers 1 to 52 stored in an
array. They can be converted easily to actual card values
when necessary. The cards should be ’shuffled' as
follows:

Choose any position in range 1 to 51 (e.g. 17).

Place the card in this position in a temporary store.

Shunt all the cards in positions 52 to 18 down to
positions 51 to 17.

Place the chosen card from the temporary store to
position 52.

Deal similarly with the ranges 1 to 50, 1 to 49.
down to 1 to 2 so that the pack is well shuffled.
Output the result of the shuffle.

6 Set up six DATA statements each containing a surname,
initials and a telephone number (dialling code and local
number). Decide on a suitable structure of arrays to
store this information and READ it into the arrays.

PRINT the data using a separate FOR loop and explain
how the input format (DATA), the internal format
(arrays) and output format are not necessarily all the
same

B13-10

14 Program structure

In this section we go over the ground of program structure :
loops and decisions or selection. We have tried to present
things in as simple a way as possible, but TONTO BASIC is
designed to cope properly with the simple and the complex and
all levels in between. Some parts of this chapter are
difficult and if you are new to programming you may wish to
omit parts. The topics covered are:

Loops
Nested loops
Binary decisions
Multiple decisions

The first section, Loops, gets progress!vely more difficult as
we show how TONTO BASIC copes with problems that other
languages simply ignore. Skip these parts if you feel so
inclined, but the other sections are more straightforward.

LOOPS This section attempts to illustrate the well-known problems of
handling repetition with simulations of some Wild West scenes.
The context may be contrived and trivial but it offers a
simple basis for discussion and illustrates difficulties which
arise across the whole range of programming applications.

Example 1

A bandit is holed up in the Old School House. The sheriff has
six bullets in his gun. Simulate the firing of the six shots.

Program 1

10 REMark Western FOR
20 FOR bullets = 1 TO 6
30 PRINT "Take aim“
40 PRINT “Fire shot“
50 END FOR bullets

B14-1

Program 2

10 REHark Western REPeat
20 LET bullets = 6
30 REPeat bandit
40 PRINT “Take aim"
50 PRINT "Fire shot“
60 LET bullets = bullets - 1
70 IF bullets = 0 THEN EXIT
80 END REPeat bandit

Both these programs produce the same output:

Take aim
Fire shot

is printed six times.

If in each program the 6 is changed to any number down to 1,
both programs still work as you would expect. But what if the
gun is empty before any shots have been fired?

Example 2

Suppose that someone has secretly taken all the bullets out of
the sheriff’s gun. What happens if you simply change the 6 to
0 in each program?

Program 1

10 REMark Western FOR Zero Case
20 FOR bullets = 1 to 0
30 PRINT "Take aim"
40 PRINT "Fire a shot"
50 END FOR bullets

This works correctly. There is no output. The zero case
behaves properly in TONTO BASIC.

B14-2

Program 2

10 REKark Western REPeat Fails
20 LET bullets = 0
30 REPeat bandit
40 PRINT -Take aim-
50 PRINT “Fire a shot-
60 LET bullets = bullets -1
70 IF bullets = 0 THEN EXIT bandit
80 END REPeat bandit

Program 2 fails in two ways:

1 Take aim
Fire a shot

is printed though there were never any bullets

2 By the time the variable, bullets, is tested in line 70
it has the value -1 and it never becomes zero afterwards.
The program loops indefinitely. You can cure the endless
looping by re-writing line 60:

70 IF bullets < 1 THEN EXIT bandit

There is an inherent fault in the programming which does not
allow for the possible zero case. This can be corrected by
placing the conditional EXIT before the PRINT statements,
thus:

Program 3

10 REMark Western REPeat Zero Case
20 LET bullets = 0
30 REPeat bandit
40 IF bullets = 0 THEN EXIT bandit
50 PRINT “Take aim-
60 PRINT "Fire a shot-
70 LET bullets = bullets -1
80 END REPeat bandit

The program now works properly whatever the initial value of
bullets as long as it is a positive whole number or zero.
Program 2 corresponds to the REPEAT...UNTIL loop of some
languages. Program 3 corresponds to the WHILE...ENDWHILE
loop of some languages. However, the REPeat...END REPeat
with EXIT is more flexible than either, or the combination
of both.

814-3

If you have used other BASICS you may wonder what has happened
to the NEXT statement. We re-introduce it soon but you will
see that the loops have a similar structure and both are
named.

FOR name ~ (opening keyword) REPeat name -
statements (content) statements

END FOR name (closing keyword) END REPeat name

In addition the REPeat loop must normally have an EXIT
amongst the statements or it never ends.

Note also that the EXIT statement causes control to go to
immediately after the END of the loop.

A NEXT statement may be placed in a loop. It causes control
to go to just after the opening keyword FOR or REPeat. It
should be considered as a kind of opposite to the EXIT
statement.

NEXT is included here for compatibility with other BASICS.
It is unnecessary in well structured programs but its use is
shown below:

Example 3

The situation is the same as in example 1. The sheriff has a

gun loaded with six bullets and he is to fire at the bandit,
ut two more conditions apply:

1 If he hits the bandit he stops firing and returns to
Dodge City

2 If he runs out of bullets before he hits the bandit, he
tells his partner to watch the bandit while he (sheriff)
returns to Dodge City

B14-4

Program 1

10 REMark Western FOR with Epilogue
20 FOR bullets = 1 TO 6
30 PRINT "Take aim"
40 PRINT "Fire a shot"
50 LET hit = RND(9)
60 IF hit = 7 THEN EXIT bullets
70 NEXT bullets
80 PRINT "Watch Bandit"
90 END FOR bullets

100 PRINT “Return to Dodge City"

In this case, the content between NEXT and END FOR is a
kind of epilogue which is only executed if the FOR loop runs
its full course. If there is a premature EXIT, the epilogue
is not executed.

The problem can be better reflected without the use of NEXT,
thus:

Program 2

10 REMark Western REPeat with Epilogue
20 LET bullets = 6
30 REPeat bandit
40 PRINT “Take aim-
50 PRINT "Fire a shot-
60 LET bullets = bullets -1
70 LET hit = RND(9)
80 IF (hit=7) OR (bullets = 0) THEN EXIT bandit
90 END REPeat bandit

100 IF NOT hit THEN PRINT “Watch Bandit"
110 PRINT "Return to Dodge City"

This version better reflects the problem by executing lines 30
to 90 until the bandit is shot or the sheriff runs out of
bullets. Only when this part is complete does the program make
a decision about the required action.

The program works properly as long as the sheriff has at least
one bullet at the start. It fails if line 20 reads:

20 LET bullets = 0

B14-5

You might think that the sheriff would be a fool to start an
enterprise of this kind if he had no bullets at all, and you
would be right. We are now discussing how to preserve good
structure in the most complex type of situation. We have at
least kept the problem context simple; we know what we are
trying to do. Complex structural problems usually arise in
contexts more difficult than Wild West simulations. But if you
really want a solution to the problem which caters for a
possible hit, running out of bullets and an epilogue, and also
the zero case, add the following lines into the above program
and remove line 80:

25 hit = 0 : REMark bandit starts off unhurt
35 IF hit OR (bullets = 0) THEN EXIT bandit

We can conceive of no more complex type of problem than this
with a single loop. TONTO BASIC can easily handle it if you
want it to.

NESTED LOOPS Consider the following FOR loop which PRINTS a row of
crosses in various randomly chosen colour tones (not black).

10 REMark Row of crosses
20 PAPER 0 : CLS
30 LET down = 10
40 FOR across = 20 TO 30
50 INK RND(2 TO 7)
60 AT down, across: PRINT “x";
70 END FOR

This program prints a row of crosses thus:

xxxxxxxxxxx

If you want to get, say, 11 rows of crosses you must PRINT a
row for each value of daun from 5 to 15. But you must always
observe the rule that a structure can go completely within
another or it can go properly around it. It can also follow in
sequence, but it cannot mesh with another structure. Books
about programming often show how FOR loops can be related
with a diagram like this:

B14-6

Right
(nested) Right

(sequence)
Wrong

(Meshed)

In TONTO BASIC the rule applies to all structures. You can
solve all problems using them properly. We therefore treat the
FOR loop as an entity and design a new program:

FOR down = 5 TO 15

FOR across = 20 TO 30
AT down, across: PRINT "x";

END FOR across

END FOR down

When we translate this into a program, we expect it to work
and know what it will do. It prints a rectangle made up of
rows of crosses.

10 REMark Rows of crosses
20 PAPER 0 : CLS
30 FOR down = 5 TO 15
50 FOR across = 20 TO 30
60 INK RND(2 TO 7)
70 AT down, across : PRINT "x";
80 END FOR across
90 END FOR down

Different structures may be nested. Suppose we replace the
inner FOR loop of the above program by a REPeat loop. We
terminate the REPeat loop when the zero colour code appears
for a selection in the range 0 to 7.

B14-7

10 REMark REPeat within FOR
20 PAPER 0 : CLS
30 FOR down = 5 TO 15
40 AT down, 20
50 REPeat crosses
60 LET colour = RND(7)
70 INK colour
90 PRINT “x";

100 IF colour < 2 then EXIT crosses
110 END REPeat crosses
120 END FOR down

If the program selects colour 0 or 1 as its first option, it
will produce no visible output as black ink cannot be seen on
black paper!

Much of the wisdom about program control and structure can be
expressed in two rules:

1 Construct your program using only the legitimate
structures for loops and decision-making

2 Each structure should be properly in sequence or wholly
within another larger structure

BINARY The three types of binary decision can be illustrated easily
DECISIONS in terms of what to do when it rains.

Program 1

10 REMark Short form IF
20 LET rain = RND(0 TO 1)
30 IF rain THEN PRINT “Open brolly"

Program 2

10 REMark Long form IF...END IF
20 LET rain = RND(0 TO 1)
30 IF rain THEN
40 PRINT “Wear coat-
50 PRINT "Open brolly"
60 PRINT "Walk fast"
70 END IF

B14-8

Program 3

10 REMark Long form IF...ELSE...END IF
20 LET rain = RND(O TO 1)
30 IF rain THEN
40 PRINT “Take a bus“
50 ELSE
60 PRINT “Walk"
70 END IF

All these are binary decisions. The first two programs are
simple: either something happens or it does not. The third is
a general binary decision with two distinct possible courses
of action, both of which must be defined.

You can omit THEN in the long forms if you wish. In the
short form you can substitute : for THEN.

Example

Consider a more complex example in which it seems natural to
nest binary decisions. This type of nesting can be confusing
and you should only do it if it seems the most natural thing
to do. Careful attention to layout, particularly indenting, is
especially important.

Analyse a piece of text to count the number of vowels,
consonants and other characters. Ignore spaces. For simplicity
the text is all upper case.

“COMPUTER HISTORY WAS MADE IN 1984“

Program design

Read in the data
FOR each character

.IF letter THEN
IF vowel

increase vowel count
ELSE

increase consonant count
END IF

ELSE
IF not space THEN increase other count

END IF
END FOR
PRINT results

B14-9

Program

10 REHark Character Counts
20 READ text$
30 LET vowels = 0 : cons = 0 : others = 0
40 FOR num = 1 TO LEN(texts)
50 LET ch$ = textS(num)
60 IF ch$ >= "A" AND ch$ <= "Z"
70 IF ch$ INSTR "AEIOU"
80 LET vowels = vowels + 1
90 ELSE

100 LET cons = cons + 1
110 END IF
120 ELSE
130 IF ch$ <> " " THEN others = others + 1
140 END IF
150 END FOR num
160 PRINT "Vowel count is"! vowels
170 PRINT "Consonant count is"! cons
180 PRINT "Other count is"! others
190 DATA "COMPUTER HISTORY WAS MADE IN 1984"

Results in the output:

Vowel count is 9
Consonant count is 15
Other count is 4

MULTIPLE
DECISIONS
The SELect
statemenT~

Where there are three or more possible actions and none is
dependent on a previous choice, the natural structure to use
is SELect which enables selection from any number of
possibilities.

Example

A magic snake grows without limit by adding a section to its
front. Each section may be up to twenty units long and may be
a new colour, or it may remain the same. Each new section must
grow in one of the directions North, South, East and West. The
snake starts from the centre of the window.

B14-10

Method

At any time while the snake is still on the screen, you choose
a random length and ink colour. The direction may be selected
by a number 1, 2, 3 or 4 as shown:

North 1

West 4 East 2

South 3

Program design

Select PAPER
Set snake to centre of window
REPeat

Choose direction, colour, length of growth
FOR unit = 1 to growth

Make snake grow, north, south, east or west
If snake is off window then exit

END FOR
END REPeat
PRINT end message

Program

100 REMark magic snake
110 PAPER 0 : CLS
120 LET across = 39 : up = 10
130 REPeat snake
140 LET direction = RND(1 TO 4) : colour = RND(2 TO 7)
150 LET growth = RND(1 TO 6)
160 INK colour
170 FOR unit = 1 TO growth
180 SELect ON direction
190 ON direction = 1
200 LET up = up + 1
210 ON direction = 2
220 LET across = across + 1
230 ON direction = 3
240 LET up = up - 1

B14-11

ON num = list of values

250 ON direction = 4
260 LET across = across - 1
270 END SELect
280 IF across<l OR across>78 OR up<l OR up>18 THEN EXIT

snake
290 AT 19-up,across : PRINT CHR$(127);
300 END FOR unit
310 END REPeat snake
320 PRINT “Snake off edge"

The syntax of the SELect ON structure also allows for the
possibility of selecting on a list of values such as

5, 6, 8, 10 TO 13

It is also possible to allow for an action to be executed if
none of the stated values is found. The full structure is of
the form given below.

Long form SELect ON num

Short form

statements
ON num = list of values

statements

ON num = REMAINDER
statements

END SELect

where num is any numeric variable and the REMAINDER clause
is optional.

There is a short form of the SELect structure. For example:

10 INPUT num
20 SELect ON num = 0 TO 9 : PRINT "number is a single

digi t"

performs as you would expect.

814-12

EXERCISES ON
SECTION 14

1 Store ten numbers in an array and perform a 'bubble
sort*. This is done by comparing the first pair and
exchanging, if necessary, the second pair (second and
third numbers), up to the ninth pair (ninth and tenth
numbers). The first run of nine comparisons and possible
exchanges guarantees that the highest number will reach
its correct position. Another eight runs will guarantee
eight more correct positions, leaving only the lowest
number which must be in the only (correct) position left.
The simplest form of 'bubble sort' of ten numbers
requires nine runs of nine comparisons

2 Consider ways of speeding up bubblesort, but do not
expect that it will ever be very efficient

3 An auctioneer wishes to sell an old clock and he has
instructions to invite a first bid of £50. If no-one bids
he can come down to £40, £30, £20, but no lower, in an
effort to start the bidding. If no-one bids, the clock is
withdrawn from the sale. When bidding starts, he takes
only £5 increases until the final bid is made. If the
final bid is £35 (the 'reserve price') or more, the clock
is sold. Otherwise it is withdrawn.

Simulate the auction using the equivalent of a six-sided
die throw to start the bidding. A 'six' at any of the
starting prices will start the bidding off.

When the bidding has started there should be a three out
of four chance of a higher bid at each invitation

4 In a wild west shoot-out, the Sheriff has no ammunition
and wishes to arrest a gunman camped in a forest. He
rides amongst the trees tempting the gunman to fire. He
hopes that when six shots have been fired he can rush in
and overpower the gunman as he tries to reload. Simulate
the encounter giving the gunman a one-twentieth chance of
hitting the Sheriff with each shot. If the Sheriff has
not been hit after six shots, he has a 75% chance of
overpowering the gunman

5 The sheriff's instructions to his Deputy are:

"If the gun is empty, re-load it, and if it ain't then
keep on firing until you hit the bandit or he surrenders.
If Mexico Pete turns up, get out fast."

B14-13

Write a program which caters properly for all these
si tuations:

Whatever happens, sheriff returns to Dodge City
If Mexico Pete turns up, return immediately
If the gun is empty, reload it
If the gun is not empty, ask the bandit to surrender
If the bandit surrenders, arrest him
If he doesn't surrender, fire a shot
If the bandit is hit, arrest him and fix his wound

Assume an unlimited supply of ammunition. Use a simulated
'twenty-sided die' and let a seven mean 'surrender' and a
'thirteen' mean the bandit is hit.

B14-14

15 Procedures and functions

SUMMARY

VALUE
PARAMETERS

The first part of this section explains the more
straightforward features of TONTO BASIC's procedures and
functions. This is done with very simple examples so that you
can understand the working of each feature as it is described.
Though the examples are simple and contrived, you will
appreciate that, once understood, the ideas can be applied in
more complex situations where they really matter.

After the first part, there is a discussion which attempts to
explain 'Why procedures?'. If you understand - more or less -
up to that point you will be doing well, and you should be
able to use procedures and functions with increasing
effectiveness.

TONTO BASIC first allows you to do the simpler things in
simple ways and then offers you more if you want it. Extra
facilities and some technical matters are explained in the
second part of this section but you could omit these,
certainly at a first reading, and still be in a stronger
position than most users of older types of BASIC.

You have seen in previous sections how a value can be passed
to a procedure. Here is another example

Example 1

In Chan's Chinese Take-Away there are just six items on the
menu.

Rice Dishes Sweets

1 prawns 4 ice-cream
2 chicken 5 fritter
3 special 6 lychees

Chan has a simple way of computing prices. He works in pence
and the prices are:

for a rice dish 300 + 10 times menu number
for a sweet 12 times menu number

B15-1

Thus a customer who ate special rice and an ice-cream would
pay:

300 + 10 * 3 + 12 * 4 = 378 pence

A procedure, item, accepts a menu number as a value parameter
and prints the cost.

Program

10 REMark Cost of Dish
20 item 3
30 item 4
40 DEFine PROCedure item(num)
50 IF num <= 3 THEN LET price = 300 + 10 * num
60 IF num >= 4 THEN LET price = 12 * num
70 PRINT !price!
80 END DEFine

Output: 330 48

In the main program, actual parameters 3 and 4 are used. The
procedure definition has a formal parameter, num, which
takes the value passed to it from the main program. Note that
the formal parameters must be in brackets, but that actual
parameters need not be.

Example 2

Now suppose the working variable, price, was also used in the
main program, meaning something else, say the price of a glass
of lager, 70p. The following program fails to give the desired
result:

315-2

Program

10 REMark Global price
20 LET price = 70
30 item 3
40 item 4
50 PRINT 'price!
60 DEFine PROCedure item(num)
70 IF num <= 3 THEN price = 300 + 10 * num
80 IF num >= 4 THEN price = 12 * num
90 PRINT !price!

100 END DEFine

Output: 330 48 48

The price of the lager has been altered by the procedure. We
say that the variable, price, is global because it can be
used anywhere in the program.

Example 3

Make the procedure variable, price, LOCAL to the procedure.
This means that TONTO BASIC treats it as a special variable
accessible only within the procedure. The variable, price, in
the main program will be a different thing even though it has
the same name.

Program

10 REMark LOCAL price
20 LET price = 70
30 item 3
40 item 4
50 PRINT Iprice!
60 DEFine PROCedure item(num)
70 LOCAL price
80 IF num <= 3 THEN LET price = 300 + 10*num
90 IF num >= 4 THEN LET price = 12*num

100 PRINT Sprice!
110 END DEFine

Output: 330 48 70

This time everything works properly. Line 70 causes the
procedure variable, price to be internally marked as belonging
only to the procedure, item. The other variable, price, is not
affected. You can see that local variables are useful things.

B15-3

Example 4

Local variables are so useful that we automatically make
procedure formal parameters local. Though we have not
mentioned it before parameters such as num in the above
programs cannot interfere with main program variables. To
prove this we drop the LOCAL statement from the above
program and use num for the price of lager. Because num in the
procedure is local, everything works.

Program

10 REMark LOCAL parameter
20 LET num = 70
30 item 3
40 item 4
50 PRINT num
60 DEFine PROCedure item(num)
70 IF num <= 3 THEN LET price = 300 + 10*num
80 IF num >= 4 THEN LET price = 12*num
90 PRINT ‘price!

100 END DEFine

Output: 330 48 70

VARIABLE
PARAMETERS

So far we have only used procedure parameters for passing
values to the procedure. But suppose the main program wants
the cost of an item to be passed back so that it can compute
the total bill. We do this easily by providing another
parameter in the procedure call. This must be a variable,
because it has to receive a value from the procedure. We
therefore call it a variable parameter and it must be
matched by a corresponding variable parameter in the procedure
defini tion.

Example

Use actual variable parameters, cost_l and cost 2 to
receive the values of the variable price from tne procedure.
Make the main program compute and print the total bill.

B15-4

Program

10 REMark Variable parameter
20 LET num = 70
30 item 3,cost_l
40 item 4,cost_2
50 LET bill = num + cost 1 + cost_2
60 PRINT bill
70 DEFine PROCedure item(num, price)
80 IF num <= 3 THEN LET price = 300 + 10*num
90 IF num >= 4 THEN LET price = 12*num

100 END DEFine

Output: 448

The parameters num and price are both automatically local so
there can be no problems. The diagram shows how information
passes from main program to procedure and back:

Menu numbers K

Mam Procedure
Program . prices item

1
That is enough about procedures and parameters for the
present.

FUNCTIONS You already know how a system function works. For example the
function:

SQRT(9)

computes the value, 3, which is the square root of 9. We say
the function returns the value 3. A function, like a
procedure, can have one or more parameters, but the
distinguishing feature of a function is that it returns
exactly one value. This means that you can use it in
expressions that you already have. You can type:

PRINT 2*S0RT(9)

and get the output 6. Thus a function behaves like a
procedure, with one or more value parameters and exactly one
variable parameter holding the returned value; that variable
parameter is referenced using the function name itself.

B15-5

The parameters need not be numeric.

LEN(“string")

has a string argument but it returns the numeric value 6.

Example

Re-write the program of the last section which uses price as a
variable parameter. Let price be the name of the function.

Notice the simplification in the calling of functions as
compared with procedure calls.

Program

10 REMark FuNction with RETURN
20 LET num = 70
30 LET bill = num + price(3) + price(4)
40 PRINT bill
50 DEFine FuNction price(num)
60 IF num <= 3 THEN RETURN 300 + 10* num
70 IF num >= 4 THEN RETURN 12* num
80 END DEFine

Output: 448

The abbreviation for FuNction is FN for compatibility with
other BASICS. This accounts for its odd form in programs.

WHY PROCEDURES? The ultimate concept of a procedure is that it should be a
black box which receives specific information from 'outside',
and performs certain operations which may include sending
specific information back to the 'outside*. The 'outside* may
be the main program or another procedure.

The term black box implies that its internal workings are
not important; you only think about what goes in and what
comes out. If, for example, a procedure uses a variable,
count, and changes its value, that might affect a variable
of the same name in the main program. Think of a mail order
company. You send them an order and cash; they send you goods.
Information is sent to a procedure and it sends back action
and/or new information.

B15-6

You do not want the mail order company to use your name and
address, or other information, for other purposes. That would
be an unwanted side-effect. Similarly, you do not want a
procedure to cause unplanned changes to values of variables
used in the main program.

Of course you could make sure that there are no double uses of
variable names in a program. That will work up to a point but
we have shown in this chapter how to avoid trouble even if you
do not know what variables are used outside a procedure.

A second aim in using procedures is to make a program modular.
Rather than have one long main program, you can break the job
down into what Seymour Papert - the inventor of LOGO - calls
Mind-sized bites. These are the procedures, each one small
enough to understand and control easily. They are linked
together by procedure calls in a sequence or hierarchy.

A third aim is to avoid writing the same code twice. Write it
once as a procedure and call it twice if necessary.

We give below another example which shows how procedures make
a program modular.

B15-7

Example

An order is placed for six dishes at Chan's Take Away, where
the menu is:

Write procedures for the following tasks.

Item Number Di sh Price

1 Prawns 3.50
2 Chicken 2.80
3 Speci al 3.30

1 Set up two three-element arrays showing menu, dishes and
prices. Use a DATA statement

2 Simulate an order for six randomly chosen dishes using a
procedure, choose, and make a tally of the number of
times each dish is chosen

3 Pass the three numbers to a procedure, uniter, which
passes back the cost of the order to the main program
using a parameter cost. Procedure waiter calls two
other procedures, compute and cook, which compute the
cost and simulate cooking.

4 The procedure, cook, simply prints the number required
and the name of each dish

The main program should call procedures as necessary, get the
total cost from procedure miter, add 15% VAT and print the
amount of the total bill.

Program design

This program illustrates parameter passing in a fairly complex
way, and we explain the program step by step before putting it
together.

10 REMark Procedures
20 DIM item$(3,7), price(3), dish(3)
30 LET vat = 1 + 15/100
40 set-up

B15-8

100 DEFine PROCedure set up
110 FOR k = 1 TO 3 “
120 READ item$(k)
130 READ price(k)
140 END FOR k
150 END DEFine

370 DATA "Prawns**, 3.5, "Chicken", 2.8, "Special', 3.3

The names of menu items and their prices are placed in the
arrays item$ and price.

The next step is to choose a menu number for each of the six
customers. The tally of the number of each dish required is
kept in the array dish.

50 choose dish

160 DEFine PROCedure choose(dish)
170 FOR pick = 1 TO 6
180 LET number = RND(1 TO 3)
190 LET dish(number) = dish(number) + 1
200 END FOR pick
210 END DEFine

Note that the identifier dish is

an array in the main program
a formal parameter which is local to the procedure choose

In this case, the actual parameter dish has the effect of
making the identifier refer to the same thing. However, if the
actual parameter in line 50 were changed to price, the three
values passed back from the procedure choose would be
reflected in array price, not dish

60 waiter dish, bill

220 DEFine PROCedure waiter!dish, cost)
230 compute dish, cost
240 cook dish
250 END DEFine

B15-9

The waiter passes the information about the number of each
dish required to the procedure, compute, which computes the
cost and returns it.

260 DEFine PROCedure compute(dish, total)
270 LET total = 0
280 FOR k = 1 TO 3
290 LET total = total + dish(k)*price(k)
300 END FOR k
310 END DEFine

The waiter also passes information to the cook who simply
prints the number required for each menu item.

320 DEFine PROCedure cook(dish)
330 FOR c = 1 TO 3
340 PRINT ! dish(c) • item(c) !
350 END FOR c
360 END DEFine

Again, the array, dish in the procedure cook is local. It
receives the information which the procedure uses in its
PRINT statement.

The complete program is listed below.

Program

10 REMark Procedures
20 DIM item$(3,7), price(3), dish(3)
25 REMark *** PROGRAM ***
30 LET vat = 1 + 15/100
40 set_up
50 choose dish
60 waiter dish, bill
80 LET bill = bill * vat
90 PRINT “Total cost is £" ; bill
95 REMark *** PROCEDURE DEFINITIONS ***

100 DEFine PROCedure set_up
110 FOR k = 1 TO 3
120 READ item$(k)
130 READ price(k)
140 END FOR k
150 END DEFine
160 DEFine PROCedure choose(dish)
170 FOR pick = 1 TO 6
180 LET number = RND(1 TO 3)
190 LET dish(number) = dish(number) + 1
200 END FOR pick

B15-10

210 END DEFine
220 DEFine PROCedure waiter!dish, cost)
230 compute dish, cost
240 cook dish
250 END DEFine
260 DEFine PROCedure compute(dish, total)
270 LET total = 0
280 FOR k = 1 TO 3
290 LET total = total + dish(k)*price(k)
300 END FOR k
310 END DEFine
320 DEFine PROCedure cook(dish)
330 FOR c = 1 TO 3
340 PRINT ! dish(c) ! item$(c)
350 END FOR c
360 END DEFine
365 REMark *** PROGRAM DATA ***
370 DATA "Prawns”, 3.5, "Chicken", 2.8, "Special", 3.3

The output depends on the random choice of dishes, but the
following choice illustrates the pattern and gives a sample
output:

3 prawns
1 Chicken
2 Special

Total cost is £21.89

COMMENT
Obviously the use of procedures and parameters in such a
simple program is not necessary, but imagine that each sub­
task might be much more complex. In such a situation the use
of procedures would allow a modular build-up of the program
with testing at each stage. The above example merely
illustrates the main notations and relationships of
procedures.

Similarly, the next example illustrates the use of functions.

Note that in the previous example the procedures waiter and
compute both return exactly one value. Re-write the
procedures as functions and show any other changes necessary
as a consequence, as follows:

DEFine FuNction waiter(dish)
cook dish
RETURN compute dish

END DEFine

815-11

DEFine FuNction computet dish)
LET total = 0
FOR k = 1 TO 3

LET total = total + dish(k)*price(k)
END FOR k

END DEFine

The function call to waiter also takes a different form

LET bill = waiter!dish)

This program works as before. Notice that there are fewer
parameters, though the program structure is similar. That is
because the function names are also serving as parameters
returning information to the source of the function call.

Example

All the variables used as formal parameters in procedures or
functions are ‘safe* because they are automatically local.
Which variables used in the procedures or functions are not
local? What additional statements would be needed to make them
local?

Program changes

The variables k, pick, c and number are not local. The
necessary changes to make them so are:

105 LOCal k
165 LOCal pick, number
265 LOCal k
325 LOCal c

TYPELESS
PARAMETERS

Formal parameters do not have any type. (We have not mentioned
this fact before, because you can work perfectly well without
this knowledge!) They may look as though they have a type and
you may prefer that a variable which handles numbers should
look numeric, and a variable which handles strings should look
as though it does. But however you write your parameters they
are typeless. To prove it, try the following program.

B15-12

Program

10 REMark Number or word
20 waiter 2
30 waiter "Chicken”
40 DEFine PROCedure waiter!item)
50 PRINT item
60 END DEFine

Output: 2 Chicken

The type of the parameter is determined only when the
procedure is called and an actual parameter arrives.

SCOPE OF
VARIABLES

Consider the following program and try to consider what two
numbers will be output.

10 REMark scope
20 LET number = 1
30 test
40 DEFine PROCedure test
50 LOCAL number
60 LET number = 2
70 PRINT nunijer
80 try
90 END DEFine

100 DEFine PROCedure try
110 PRINT number
120 END DEFine

Obviously the first number to be printed is 2, but is the
variable number in line 100 global?

The answer is that the value of number in line 60 is carried
into the procedure try. A variable which is local to a
procedure will be the same variable in a second procedure
called by the first.

Equally, if the procedure try is called by the main program
the variable number will be the same number in both the main
program and procedure try. The implications may seem strange
at first but they are logical.

1 The variable number in line 20 is global

2 The variable number in procedure try is definitely
local to the procedure

B15-13

3 The variable number in procedure try belongs to the
part of the program which was the last call to it

EXERCISES ON
SECTION 15

We have covered many concepts in this section because TONTO
BASIC functions and procedures are very powerful. However, you
should not expect to use all these features immediately. Use
procedures and functions in simple ways at first. They can be
very effective and the power is there if you need it.

1 Six employees are identified by their surnames only. Each
employee has a particular pension fund rate expressed as
a percentage. The following data represents the total
salaries and pension fund rates of the six employees

Benson 13,800 6.25
Hanson 8,700 6.00
Johnson 10,300 6.25
Robson 15,000 7.00
Thomson 6,200 6.00
Watson 5,100 5.75

Write procedures to:

input the data into arrays
compute the annual pension fund contributions
output the lists of names and computed contributions

Link the procedures with a main program calling them in
sequence

2 Write a function pick with two arguments range and
miss. The function should return a random whole number
in the given range but it should not be the value of
miss

Use the function in a program which chooses a random
PAPER colour and then prints random letters in random
INK colours, so that none is the same colour as the
PAPER

3 Re-write the solution to exercise 1, so that a function
pension takes salary and contribution rate as arguments
and returns the computed pension contribution. Use two
procedures, one to input the data and one to output the
required information using the function pension

B15-14

4 Write the following:

a procedure which sets up a 'pack of cards'
a procedure which shuffles the cards
a function which takes a number as an argument and
returns a string value describing the card
a procedure which deals and displays four poker hands
of five cards each
a main program which calls the above procedures

(see section 16 for discussion of a similar problem)

B15-15

16 Some techniques

SIMULATION OF
CARD PLAYING

In this final section we present some applications of concepts
and facilities already discussed and show how some further
ideas may be applied.

It is easy to store and manipulate 'playing cards' by
representing them with the numbers 1 to 52. This is how you
might convert such a number to the equivalent card. Suppose,
for example, that the number 29 appears. You may decide that:

cards 1-13 are hearts
cards 14-26 are clubs
cards 27-39 are diamonds
cards 40-52 are spades

and you will know that 29 means that you have a diamond. You
can program the TONTO to do this with:

LET suit = (card-1) div 13

This produces a value in the range 0 to 3 which you can use to
cause the appropriate suit to be printed. The original value
can be reduced to the range 1 to 13 by writing:

LET value = card MOD 13
IF value = 0 THEN LET value = 13

The numbers 1 to 13 can be made to print Ace, 2, 3... Jack,
Oueen, King, or, if you prefer it, such phrases as "two of
hearts" can be printed. The following program prints the name
of the card corresponding to your input number:

Program

10 REMark Cards
20 DIM suitname$(4,8).cardval$(13,5),
30 LET f$ = "of"
40 set_up
50 REPeat cards

'60 INPUT "Enter a card number 1-52:“ ! card
70 IF card <1 OR card> 52 THEN EXIT cards
80 LET suit = (card-1) DIV 13
90 LET value = card MOD 13

100 IF value = 0 THEN LET value = 13
120 PRINT cardvalj(value) 1 f$! suitnameS(suit)
130 ENO REPeat cards

B16-1

SEQUENTIAL
DATA FILES

Numeric file

140 DEFine PROCedure set up
150 FOR s = 1 TO 4 : READ suitname$(s)
160 FOR v = 1 TO 13 : READ cardval$(v)
170 END DEFine
180 DATA “hearts","clubs”,"diamonds","spades"
190 DATA "Ace","Two","Three","Four","Five",“Six","Seven”
200 DATA "Eight","Nine","Ten",“Jack","Queen",“King"

A sample input with corresponding output is given below:

Input Output

13 King of hearts
49 Ten of spades
27 Ace of diamonds

COMMENT
Notice the use of DATA statements to hold a permanent file
of data which the program always uses. The other data, which
changes each time the program runs, is entered through an
INPUT statement. If the input data is known before running
the program, it would be equally correct to use another READ
and more DATA statements. This gives better control.

The following program establishes a file of one hundred
numbers.

10 REMark Number File
20 OPEN_NEW #6,MDVl_numbers
30 FOR num = 1 TO 100
40 PRINT #6,num
50 END FOR num
60 CLOSE #6

You can get a view of the file - without any special
formatting - by copying from microdrive to screen:

COPY MDVl_numbers to SCR_

B16-2

You can also use the following program to read the file and
display its records on the screen.

10 REMark Read File
20 OPEN_IN #6,MDV1 numbers
30 FOR num = 1 TO TOO
40 INPUT #6,item
50 PRINT ! item !
60 END FOR num
70 CLOSE #6

If you wish, you can alter the program to get the output in a
different form.

Character file In a similar fashion, the following programs set up a file of
one hundred randomly selected letters and read them back.

Program 1

10 REMark Letter File
20 OPEN_NEW #6,MDVl_chfile
30 FOR num = 1 TO 100
40 LET ch$ = CHR$(RND(65 TO 90))
50 PRINT #6,chS
60 END FOR num
70 CLOSE #6

Program 2

10 REMark Get Letters
20 OPEN IN #6,MDV1 chfile
30 FOR 'num = 1 TO IDO
40 INPUT #6,items
50 PRINT ! items !
60 END FOR num
7.0 CLOSE #6

B16-3

SETTING UP A
DATA FILE

Suppose that you wish to set up a simple file of names and
telephone numbers.

RON 678462
GEOFF 986487
ZOE 249386
BEN 584621
MEG 482349
CATH 438975
WENDY 982387

You can use the following program to do it:

10 REMark Phone numbers
20 OPEN NEW #6,MDV1 phone
30 FOR record = 1 TO 7
40 INPUT nameS,num$
50 PRINT #6,name$,num$
60 END FOR record
70 CLOSE #6

Type RUN and enter a name followed by the ENTER key and a
number followed by the ENTER key. Repeat this seven times.

READ A FILE You need to be certain that the file exists in a correct form
so you should read it back from a microdrive and display it on
the screen. You can do this easily using the following
program:

10 REMark Read Phone Numbers
20 OPEN_IN#5,MDY1 phone
30 FOR record = ITO 7
40 INPUT#5,rec$
50 PRINT rec$
60 END FOR record
70 CL0SEI5

The data is printed and each pair of fields is held in the
variable, rec$, before being printed on the screen. You have
the opportunity to manipulate it into any desired form.

Note that more than one string may be used at the file
creation stage with INPUT and PRINT, but the whole record
so created may be retrieved from the microdrive file with a
single string variable {rec$ in the above example).

B16-4

AN INSERTION
SORT

Example

Suppose you want to write a program to sort the following
colours into alphabetical order:

black blue red magenta green cyan yellow white

you can use an insertion sort.

Method

Place the eight colours in an array, colours, which is
divided into two parts:

SORTED PART UNSORTED PART

You take the leftmost item of the unsorted part and compare it
with each item - from right to left - in the sorted part until
you find its right place. As you compare you shuffle the
sorted items to the right so that when you find the right
place to insert you can do so immediately, without further
shuffli ng.

Suppose you have reached the point where four items are sorted
and you now focus on green, the leftmost item in the unsorted
part.

1 2 3 4 5 6 7 8
black blue magenta red green cyan yellow white

sorted part unsorted part

1 Place green in the variable, compS, and set a variable,
p, to 5

2 The variable, p, will eventually indicate where you
think green should go. When you know that green should
move left, you decrease the value of p

B16-5

3 Compare green with red. If green is greater than (nearer
to Z), or equal to, red, you exit and green stays where
it is

Otherwise you copy red
value of p thus:

into posi tion 5 and decrease the

1 2 3 4 5 6 7 8
black blue magenta red

A
red cyan yellow white

4 How repeat the process but this time you are comparing
green with magenta and you get:

1 2 3 4 5 I 6 7 8
black blue magenta magenta red cyan yellow white

f 1 2 3 4
5 Finally you move left again, comparing green with blue.

This time there is no need to move or change anything.
You exit from the loop and place green in position 3. You
are then ready to focus on the sixth item, cyan

1 2 3 4 5 I 6 7 8
black blue green magenta red cyan yellow white

f
Problem analysis

1 First store the colours in an array colourS(8) and use:

compS the current colour being compared
p to point at the position where you think the

colour in Corrp$ might go

2 A FOR loop will focus attention on positions 2 to 8 in
turn (a single item is already sorted)

3 A REPeat loop will allow comparisons until you find
where the comp$ value actually goes

REPeat compare
IF comp$ need go no further left EXIT
copy a colour into the position on its right
and decrease p

END REPeat compare

4 After EXIT from the REPEAT loop the colour in comp$
is placed in position p and the FOR loop continues

B16-6

Program design

1 Declare array colours
2 Read colours into the array
3 FOR item = 2 TO 8

LET p = item
LET compS = colourS(p)
REPeat compare

IF compS >= colourS(p-l): EXIT compare
LET colourS(p) = colourS(p-l)
LET p = p-1

EHD REPeat compare
LET colourS(p) = compS

END FOR item
4 PRINT sorted array colours
5 DATA

Further testing reveals a fault. It arises very easily if you
have data in which the first item is not in its correct
position at the start. A simple change of initial data to:

red black blue magenta green cyan yellow white

reveals the problem. You compare black with red and decrease
n to the value, 1. You come round again and try to compare
black with a variable colours(p-1), which is colours(0)
which has not been assigned a colour.

This is a well-known problem in computing and the solution is
to "post a sentinel" on the end of the array. Just before
entering the REPeat loop you need:

LET colour$(0) = compS

Fortunately, TOHTO BASIC allows a zero index, otherwise the
problem would have to be solved at the expense of readability.

Modified program

10 REMark Insertion Sort
20 DIM colour$(8,7)
30 FOR item = 1 TO 8 : READ colour$(itern)
40 FOR item = 2 TO 8
50 LET p = item
60 LET compS = colour$(p)
70 LET colourS(O) = compS
80 REPeat compare
90 IF compS>=colourS(p-l) : EXIT compare

100 LET colour$(p) = colourS(p-l)

816-7

ARRAY
PARAMETERS

120 LET p = p-1
130 END REPeat compare
140 LET colour$(p) = comp$
150 END FOR item
160 PRINT “Sorted..." ! colours
170 DATA “black","blue","magenta”,"red"
180 DATA "green",“cyan","yellow","white”

COMMENT
1 In fact the previous program will work without a sentinel

as TONTO BASIC will have set colour$(0) to an empty
string. You should only take advantage of such good
fortune when you are a very experienced programmer

2 An insertion sort is not particularly fast, but it can be
useful for adding a few items to an already sorted list.
To do a complete resorting it is sometimes convenient to
allow modest amounts of time frequently to keep items in
order rather than a substantial amount of time less
frequently

In the following program we illustrate the passing of complete
arrays between main program and procedure. The data passes in
both directions.

In line 40 the array, row, holding the numbers 1, 2, 3 is
passed to the procedure, addeix- The parameter, come »
receives the incoming data and the procedure adds six to each
element. The array parameter, send, at this point holds the
numbers 7, 8, 9.

These numbers are passed back to the main program to become
the values of array, back. The values are printed to prove
that the data has changed as required.

Screen
Output

B16-8

Program

10 REMark pass Arrays
20 DIM row(3),back(3)
30 FOR k = 1 TO 3 : LET row(k) = k
40 addsix row, back
50 FOR k = 1 TO 3 : PRINT back(k)
60 DEFine PROCedure addsix(come,send)
70 FOR k = 1 TO 3 : LET send(k)=come(k)+6
80 END DEFine

Output: 789

The follov/ing procedure receives an array containing data to
be sorted; the zero element contains the number of items. Note
that it does not matter whether the array is numeric or
string. The principle of coercion will change string to
numeric data if necessary.

A second point of interest is that the array element,
come(0), is used for two purposes:

it carries the number of items to be sorted
it is used to hold the item currently being placed

800 DEFine PROCedure sort(come, send)
810 LET num = come(0)
820 FOR item = 2 TO num
830 LET p = item
840 LET come(0) = come(p)
850 REPeat compare
860 IF come(0)>= come(p-l) : EXIT compare
870 LET come(p) = come(p-l)
880 LET p = p-1
890 END REPeat compare
900 LET come(p) = come(0)
910 END FOR item
920 FOR k = 1 TO num : send(k) = come(k)
930 send(O) = num
940 END DEFine

The following additional lines test the sort procedure.

10 REMark Test Sort
20 DIM row$(7,3),back$(7,3)
25 LET rowS(0) = 7
30 FOR k = 1 TO rows$(0) : READ rowS(k)
40 sort row$,backs
50 PRINT backs (1 to back$(0))!
60 DATA “EEL“, "DOG“, “ANT", “GNU", "CAT", "BUG", “FOX"

B16-9

Output: ANT BUG CAT DOG EEL FOX GNU

COMMENT
This program illustrates how easily you can handle arrays in
TONTO BASIC. All you have to do is use the array name for ■
passing them as parameters or for printing the whole array.
Once the procedure is saved you can use MERGE MDVl_sort to
add it to a program in main memory.

I
SCREEN You now have enough understanding of techniques and syntax to
PRESENTATION handle a more complex screen layout. Suppose you wish to
TECHNIQUES represent the hands of four card players. A hand can be /

represented by something like:
Card table
layout H: A 3 7 0

C: 5 9 J .
0: 6 10 K \
S: 2 4 Q

To help the presentation the Hearts and Diamonds could be
printed in white INK on light grey PAPER, and the Clubs and (
Spades in black INK on white PAPER. The general background
could be black, and a table could be represented by a mixture
of colours.

(
Method

Since a substantial amount of character printing is involved ,
it is best to plan the layout in terms of a character grid. \
You can see that you need to provide for twelve lines of cards
with some space between the cards, the table and the edge of
the screen. A first guess at the layout is shown in the
figure: \

B16-10

i

It is useful to recall that the default listing window is 20
lines of 80 characters. Down the screen the layout requires at
least:

8 = two blocks of four lines for the cards
+4 = space above and below each block of cards
+T = size of the table in lines

If the table is made four lines high there is then room for a
one character border around the picture. This gives the
followi ng layout inside1 the border:

line 0 blank
1 to 4 North hand
5 to 6 blank
7 to 10 Table, and West and East hands
11 to 12 blank
13 to 16 South hand
17 blank

Experiment shows that the table appears square if it is 10
characters wide, and is centered if its left edge is at column
33.

816-11

The maximum length of a suit in any hand is 13. Allowing for a
space before each card, and for the suit code (eg "H:"), the
display of a hand is at most 28 characters wide. If the East
hand starts at column 47 there is room for the widest hand. At
the same time the gap between the table and the East hand is
about the same as that between the table and the North hand.
Similarly the West hand should start at column 2. However,
this produces an asymmetrical effect in the display. If it is
assumed that a run of more than 8 cards is unlikely then the
West hand may be positioned at column 13 to give a more
balanced display, with a slight risk of West's cards over­
writing the table.

Window

Initially 480x200 at 0x0 - cleared to dark grey reduced to
468x180 at 6x10 (characters are 6x10 pixels) and cleared to
black.

Table

10x4 characters with the top left-hand corner AT 7,33. Stripes
produced by alternating light and dark grey.

B16-12

Hands

Room for eight card symbols, longer runs will overwrite the
table for West’s hand only. Initial positions are:

NORTH AT 1,34
EAST AT 7,47
SOUTH AT 13,34
WEST AT 7,15

Character size

Default of 6 pixels wide, 10 pixels deep.

Colour

Ink Paper

Hearts whi te dark grey
Clubs bl ack whi te
Diamonds wh i te dark grey
Spades bl ack wh i te
background bl ack
border dark grey
table dark/light grey

Variables

card (52)
sort(lS)
tok$(4,2)
ch_suit$
c

ran
temp
item
dart
comp
I in
col
P
seat
ac
dn
row
lin$

stored card numbers
used to sort each hand
stores tokens H:» C:, D: and S:
table to convert card value to A,1 to 9,T,J,Q,K
used as control variable when shuffling and
splitting
random position for card exchange
holds card during exchange
card to be inserted in sort
pointer to find position in sort
hold card number in sort
holds current line during table layout
holds current column within table layout
points to card position
current hand being printed
left edge of current hand
current line in current hand
current suit in current hand
cards in current suit

B16-13

max maximum card number that could be part of the
current suit

n
ch$

value of current card within suit
character representing value of current card

Procedures

shuffle
split

shuffles 52 cards
splits cards into four hands and calls sortem to
sort each hand

sortem
layout
printem
getline

sorts 13 cards into ascending order
provides background colour, border and table
prints each line of card symbols
gets one row of cards, converts numbers into the
symbols A,2,3,4,5,6,7,8,9,T,J,Q,K and prefixes
with the suit token

Program outline 1 Declare arrays, pick up 'tokens' and place 52 numbers in
array card

2 Shuffle cards

3 Split into 4 hands and sort each

4 OPEN a screen window, set a border and display the table

5 Print the four hands

6 CLOSE the screen window

Program 10 DIM card (52),sort(13),tok$(4,2)
15 LET ch_suit$=“A23456789TJQK“
17 RESTORE
20 FOR k=l TO 4 : READ tok$(k)
30 FOR k = 1 TO 52 : LET card(k) = k
40 shuffle
50 split
60 OPEN #6,scr_480x200a0x0
70 layout
80 printem
90 CLOSE #6

100 STOP
200 DEFine PROCedure shuffle
210 FOR c=52 TO 3 STEP -1
220 LET ran = RND(1 TO c-1)
230 LET temp = card(c)
240 LET card(c) = card(ran)

B16-14

250
260
270
300
310
320
330
340
350
360
370
380
390
400
500
510
520
530
540
550
560
570
580
590
600
610
620
700
710
720
730
731
732
736
738
740
745
750
800
820
830
840
850
860
870
880
890
900
910
920

LET card(ran) = temp
END FOR c

END DEFine
DEFine PROCedure split

FOR h = 1 TO 4
FOR c = 1 TO 13

LET sort(c) = card((h-1)*13+c)
END FOR c
sortem
FOR c = 1 TO 13

LET card ((h-l)*13+c) = sort(c)
END FOR c

END FOR h
END DEFine
DEFine PROCedure sortem

FOR item = 2 TO 13
LET dart = item
LET comp = sort(dart)
LET sort(O) = comp
REPeat compare

IF comp >=sort(dart-l) : EXIT compare
LET sort(dart) = sort(dart-l)
LET dart = dart-1

END REPeat compare
LET sort(dart)=comp

END FOR item
END DEFine
DEFine PROCedure layout

PAPER #6,4 : CLS #6
PAPER #6,0:WIND0W #6,468,180,6,10:CLS #6
FOR lin = 7 TO 10

AT #6,1 in,33
FOR col = 1 TO 9 STEP 2

PAPER #6,4:PRINT #6,“
PAPER #6,2:PRINT #6,“

END FOR col
END FOR lin

END DEFine
DEFine PROCedure printem

LET p = 0
FOR seat = 1 TO 4

READ ac,dn
FOR row = 1 TO 4
getline
AT #6,dn,ac
PRINT #6,lin$
LET dn = dn + 1
END FOR row

END FOR seat
END DEFine

B16-15

1000 DEFine PROCedure getline
1010 IF row MOD 2 = 0 THEN PAPER #6,6: INK #6,0
1020 IF row MOD 2 = 1 THEN PAPER #6,2: INK #6, 6
1030 LET lin$ = tokS(row)
1040 LET max = row*13
1050 REPeat one suit
1060 LET p = p+1
1070 LET n =card(p)
1080 IF n>»ax THEN p = p-1-.EXIT one_suit
1090 LET n = n MOD 13
1100 IF n=0 THEN n=13
1110 LET ch$=ch suit$(n)
1120 LET lin$ =“lin$&' *&ch$
1130 IF p = 52 : EXIT one_suit
1140 IF card(p) > card(p+l) : EXIT one_suit
1150 END REPeat one_suit
1160 END DEFine
1170 DATA ”H:","C:“,“D:","S:“
1180 DATA 34,1,47,7,34,13,15,7

CONCLUSION We have tried to show how you can use TONTO BASIC to solve
problems. We have shown how simple tasks can be performed in
simple ways. When the task is inherently complex, like
manipulating arrays, TONTO BASIC enables it to be handled
efficiently with maximum possible clarity.

If you were a beginner and you have worked through a fair
proportion of this guide you have started well on the road to
good programming. If you were experienced, we hope that you
will appreciate and exploit the extra features offered by
TONTO BASIC.

So enormous is the range of tasks which can be done with TONTO
BASIC that we have only been able to touch a fraction of them
in this guide. We cannot guess at which of the thousands of
possibilities you will attempt, but we hope that you will find
them fruitful, stimulating and fun. Happy programming!

316-16

Part C Concepts Reference Guide

1 Summary Cl-1

2 Concepts C2-1

Lists concepts in alphabetical order
as follows:

Arrays
BASIC
Channel s
Character set and keys
Clock
Coercion
Colour
Data entry
Data types, variables
Devices
Direct command
Error handling
Filetypes, files
Functions and procedures
I denti fiers
Keywords
Maths functions

Memory
Microdri ve
Operators
Permanent store
Pixel coordinates system
Program
Repeti tion
Screen
Segment
SI icing
Sound
Start up
Statement
String arrays, variables
String comparison
Hindows

1 Summary

The following section describes concepts relating to TONTO
BASIC and the TONTO hardware. It is best to think of the
concept guide as a source of information: if there are any
questions about BASIC or the TONTO itself which arise out of
using the computer or the other sections of this manual, the
concept guide may have the answer. Concepts are listed in
alphabetical order using the most likely term for that
concept. If you cannot find the subject, consult the index
which tells you which page to turn to.

Where concepts are illustrated with examples, an example
listed with line numbers is a complete program which can be
entered and run. Examples listed without numbers are usually
simple commands and it may not always be sensible to enter
them into the computer in isolation.

Cl-1

? Concepts

ARRAYS Arrays must be DIMensioned (see page 02-32) before they are
used. When an array is dimensioned, the value of each of its
elements is set to zero, or a zero length string if it is a
string array. An array dimension runs from zero up to the
specified value. There is no limit on the number of dimensions
which can be defined other than the total memory capacity of
the computer. Array data is stored such that the last index
defined cycles round most rapidly. In a DIM statement
referring to a string array, the last index defines the
maximum number of characters in each element.

Example

The array defined by

DIM array(4,2)

has elements stored as

low address
0

0 1 2 3 4

0.0 0.1 0.2 0.3 0.4

1 1.0 1.1 1.2 1.3 1.4

2 2.0 2.1 2.2 2.3 2.4

nigh address

For more details of arrays and array slicing, see sections 6
and 13 in Part B.

C2-1

BASIC TONTO BASIC includes most of the functions, procedures and
constructs found in many other dialects of BASIC. Some of
these functions are superfluous in TONTO BASIC but are
included for compatibility reasons:

GOTO use IF, REPeat, etc
GOSUB use DEFine PROCedure

ON GOTO use SELect
ON GOSUB use SELect

Some commands appear not to be present. You can always obtain
them by using a more general function. For example, there are
no LPRINT or LLIST statements in TONTO BASIC but you can
direct output to a printer by opening the relevant channel and
using PRINT or LIST.

LPRINT use PRINT#
LLIST use LIST# or SAVE PRN
VAL not required in TONTO BASIC (see coercion,

page C2-13)
STR$ not required in TONTO BASIC (see coercion,

page C2-13)
IN not applicable to this system
OUT not applicable to this system

C2-2

CHANNELS A channel is a means by which data can be output to or input
from a TONTO device. Before a channel can be used it must
first be activated (or opened) with the OPEN command. Certain
channels should always be active; these are the default
channels, which allow simple communication with the TONTO via
the keyboard and screen. When a channel is no longer of use it
can be deactivated (closed) with the CLOSE command.

A channel is identified by a channel descriptor. This
descriptor consists of # followed by the channel number.
When the channel is opened, a device is linked to a given
channel number and the channel is initialised. Thereafter, the
channel is referred to only by its channel descriptor.

For example:

OPEN #5,PRN

links the printer to the channel number 5. When the channel is
closed, only the channel descriptor should be specified.

For example:

CLOSE #5

Opening a channel requires that the device driver for that
channel be activated. Usually there is more than one way in
which the device driver can be activated. This extra
information is appended to the device name and passed to
the OPEN command as a parameter (see concept device).
You can output data to a channel by PRINTing to that channel.
This is the same mechanism by which output appears on the
TONTO screen. PRINT without a channel number outputs to its
default channel.

For example:

10 OPEN #5, MDYl_test_file
20 PRINT #5, "thTs text is in file ‘test file*"
30 CLOSE #5 “

outputs the text

this text is in file *test_file‘

to the file testjile. It is important to close the file
after all the accesses have been completed to ensure that all
data is written.

C2-3

You can input data from a file in an analogous way using
INPUT; data can be input from a channel one character at a
time using INKEYS.

A channel can be opened as a console channel; output is
directed to a specified window on the TONTO screen, and input
is taken from the TONTO keyboard. When a console channel is
opened, the size and shape of the initial window is specified.

The TONTO has three default channels which are opened
automatically:

channel 0 - command and error channel
channel 1 - output channel
channel 2 - program listing channel

Each of these channels is linked to a window on the TONTO
screen:

#1 and *2

Channels 0 and 2 may not be closed.

The commands you can use associated with channels and their
functions are summarised below:.

OPEN
CLOSE
PRINT
INPUT
INKEYS
PAPER
INK

open a channel for I/O
close a previously opened channel
output to a channel
input from a channel
input a character from a channel
select background colour for window channel
select foreground colour for window channel
clear window channel to background colourCLS

C2-4

CHARACTER SET
AMD KEYS

In the following table, numberpad keys are indicated by a
letter K in front of the numeric character.

Decimal Hex Keying Display/Function

0 00 CTRL 0 nul 1
1 01 CTRL A soh
2 02 CTRL B stx
3 03 CTRL C etx
4 04 CTRL D eot
5 05 CTRL E enq
6 06 CTRL F ack
7 07 CTRL G bel
8 08 CTRL H bs
9 09 TAB (CTRL I)

10 OA SHIFT RETURN (CTRL J) New line/Command entry
11 OB CTRL K vt
12 OC CTRL L ff
13 OD RETURN (CTRL M) New line/Command entry
14 OE CTRL H so
15 OF CTRL 0 si
16 10 CTRL P del
17 11 CTRL Q del
18 12 CTRL R de 2
19 13 CTRL S dc3
20 14 CTRL T de 4
21 15 CTRL U nak
22 16 CTRL V syn
23 17 CTRL W etb
24 18 CTRL X can
25 19 CTRL Y em
26 1A CTRL Z sub
27 IB ESC (SHIFT K")
28 1C CTRL 1 or CTRL KI
29 ID CTRL 2 or CTRL K2
30 IE CTRL 3 or CTRL K3
31 IF CTRL 4 or CTRL K4
32 20 Space (Space)
33 21 SHIFT 1 1
34 22 SHIFT *
35 23 SHIFT 3 £

Codes to 20 hex are either control character or non printing
characters. Alternative keyings are shown in brackets after
the main keying.

C2-5

Decimal Hex Keying Display/Function

36 24 SHIFT 4 $
37 25 SHIFT 5
38 26 SHIFT 7 &
39 27
40 28 SHIFT 9 1
41 29 SHIFT 0)
42 2A SHIFT 8 or K* *
43 2B SHIFT = +
44 20 •
45 2D - -
46 2E
47 2F / /
48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A SHIFT ;
59 3B ■
60 30 SHIFT , <
61 3D = =
62 3E SHIFT . >
63 3F SHIFT / ?
64 40 SHIFT 2 0
65 41 SHIFT A A
66 42 SHIFT B B
67 43 SHIFT C C
68 44 SHIFT D D
69 45 SHIFT E E
70 46 SHIFT F F
71 47 SHIFT G G
72 48 SHIFT H H
73 49 SHIFT I I
74 4A SHIFT J J
75 4B SHIFT K K
76 40 SHIFT L L
77 4D SHIFT M M
78 4E SHIFT N N
79 4F SHIFT 0 0
80 50 SHIFT P P

C2-6

Decimal Hex Keyi ng Display/Function

81 51 SHIFT Q Q
82 52 SHIFT R R
83 53 SHIFT S S
84 54 SHIFT T T
85 55 SHIFT U U
86 56 SHIFT V V
87 57 SHIFT U W
88 58 SHIFT X X
89 59 SHIFT Y Y
90 5A SHIFT Z Z
91 58 ALT 9 [
92 5C ALT 5 \
93 5D ALT 0]
94 5E SHIFT 6
95 5F SHIFT -
96 60 ALT 4
97 61 A a
98 62 B b
99 63 C c

100 64 D d
101 65 E e
102 66 F f
103 67 G g
104 68 H h
105 69 I i
106 6A J j
107 68 K k
108 6C L 1
109 6D M m
110 6E H n
111 6F 0 0
112 70 P p
113 71 0 q
114 72 R r
115 73 S s
116 74 T t
117 75 U u
118 76 V v
119 77 w w
120 78 X X
121 79 Y y
122 7A Z z
123 78 ALT 7 £
124 7C ALT 1 l
125 70 ALT 8 _____ }

C2-7

Decimal Hex Keying Display/Function

126 7E ALT 6
127 7F ALT -
128 80
129 81 ALT *-
130 82 CTRL x—
131 33 CTRL ALT
132 84 SHIFT *-
133 85 SHIFT ALT *
134 36 SHIFT CTRL *-•
135 87 SHIFT CTRL ALT
136 88 —*■
137 89 ALT —
138 8A CTRL —f
139 8B CTRL ALT —>
140 8C SHIFT —>
141 8D SHIFT ALT —*
142 8E SHIFT CTRL —>
143 8F SHIFT CTRL ALT -ir
144 90 t
145 91 ALT \
146 92 CTRL t
147 93 CTRL ALT [
148 94 SHIFT t
149 95 SHIFT ALT i
150 96 SHIFT CTRL 1
151 97 SHIFT CTRL ALT f
152 98 V
153 99 ALT L
154 9A CTRL V
155 9B CTRL ALT U
156 9C SHIFT t
157 9D SHIFT ALT I' ,

SHIFT CTRL I'158 9E
159
160

9F
AO

SHIFT CTRL ALT >

161 Al ALT A
162 A2 ALT B
163 A3 ALT C
164 A4 ALT D
165 A5 ALT E
166 A6 ALT F
167 A7 ALT G
168 A8 ALT H
169 A9 ALT I
170 , AA ALT J

C2-8

Dec i ma 1 Hex Keying Di splay/Function

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
Cl
C2

C3
C4

C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
DI
D2
D3
D4
05

ALT K
ALT L
ALT M
ALT N
ALT 0
ALT P
ALT 0
ALT R
ALT S
ALT T
ALT U
ALT V
ALT W
ALT X
ALT Y
ALT Z
CTRL 5 or CTRL
CTRL 6 or CTRL
CTRL 7 or CTRL
CTRL 8 or CTRL
CTRL 9 or CTRL
SHIFT K7
SHIFT K7
DEL

SHIFT DEL
CTRL DEL

SHIFT TAB
CTRL TAB
ALT RETURN

» or ALT 3
ALT 2

START
RESUME
REVIEW
SHIFT RECALL
SHIFT REDIAL
SHIFT SPKR

K5
K6
K7
K8
K9

f /Caps on
-—/Caps off
‘/i/Delete left one

character
—*■/Insert
t /Remove left one

character
/Back tab

' '“’/Format
II /Al t return

o
$}©

Start
Resume
Revi ew
List
Last 6
Auto

C2-9

Decimal Hex Keying Di splay/Function

214 D6 SHIFT K6 Show
215 07 SHIFT K9 Look
216 08 SHIFT K# Pri nt
217 D9 SHIFT START Blank
218 DA
219 DB
220 DC
221 DD
222 DE
223 DF
224 E0 RECALL Recal 1
225 El SPKR Speaker
226 E2 REDIAL Redial
227 E3 SHIFT KI Hold + shuttle
228 E4 SHIFT K2 Select
229 E5 SHIFT K3 End
230 E6 SHIFT K4 Di al
231 E7 SHIFT K5 Hol d
232 E8 SHIFT K8 Time
233 E9
234 EA
235 EB
236 EC
237 ED
238 EE
239 EF
240 FO ALT KO fO
241 Fl ALT KI fl
242 F2 ALT K2 f2
243 F3 ALT K3 f3
244 F4 ALT K4 f4
245 F5 ALT K5 f5
246 F6 ALT K6 f6
247 F7 ALT K7 f7
248 F8 ALT K8 f8
249 F9 ALT K9 f9
250 FA SHIFT F5
251 FB CTRL SHIFT F5
252 FC Special space
253 FD Back tab (CTRL ignored)
254 FE Special newline (CTRL
255 FF ignored)

C2-10

Note that codes 192-223 are control commands. Codes 192, 193,
208 to 218, 250 and 251 are not available to BASIC.

Codes 224-232 are used for telephony only and are not
available to BASIC.

C2-11

CLOCK The TONTO contains a real time clock which continues to run on
batteries when the computer is switched off.

slicing the string returned by the DATES command.

The format used for the date and time is:

1983 JAN 01 12:09:10

COMMENT
Indivi dual year, month, day, and time can all be obtained by

The commands you can use associated with the clock and their
functions are listed below:

SDATE
ADATE
DATE
DATES
DAYS

set the clock
adjust the clock
return the date as a number
return the date as a string
return the day of the week

C2-12

COERCION If necessary, BASIC converts the type of unsuitable data to a
type which allows the specified operation to proceed (see page
B8-3).

The operators used determine the conversion required. For
example, if an operation requires a string parameter but a
numeric parameter is supplied, BASIC first converts the
parameter to type string. It is not always possible to convert
data to the required form, and if the data cannot be converted
an error is reported.

The type of a function or procedure parameter can also be
converted to the correct type. For example, the LOAD command
requires a parameter of type name, but can accept a parameter
of type string which is converted to the correct type by the
procedure itself. Coercion of this form is always dependent on
the way the function or procedure was implemented.

There is a natural ordering of data types on the TONTO. String
is the most general type, since it can represent names,
floating point and integer numbers. Floating point is not as
general as string but it is more general than integer, since
floating point data can represent integer data (almost
exactly). The figure below shows this ordering
diagramatically. Data can always be converted moving up the
diagram, but conversion is not always possible moving down.

String
not always
possible

floating point

always possible
integer

C^-13

Examples

a = b + c No conversion is necessary before
performing the addition; conversion is not
necessary before assigning the result to a

a% = b + c No conversion is necessary before
performing the addition but the result is
converted to integer before assigning

aS = b$ + c$ b$ and c$ are converted to floating point,
if possible, before being added together.
The result is converted to string before
assi gning

LOAD “MDVl_data" The string "MDV1 data" is converted to
type name by the-LOAD procedure before it
is used

COMMENT
You can write statements in TONTO BASIC which would generate
errors in most other computer languages. In general, it is
possible to mix data types in a very flexible manner.

For example...

PRINT “1" + 2 + "3"
LET aS = '4*
LET a$ = 1 + aS + ‘S*
PRINT aS

C2-14

COLOUR BASIC programs can display characters in four different
colours (including black and white). These colours are black,
red, qreen and white. On the TONTO monochrome monitor, colours
are displayed as different intensities (shades of grey). The
grey scale is four-level from black to white, from codes 0 and
1 black to codes 6 and 7 white.

Colours The codes for colour selection are:

code colour shade

0 black black
1 black black
2 red dark grey
3 red dark grey
4 green 1i ght grey
5 green light grey
6 wh i te wh i te
7 whi te whi te

Examples

1 INK 0 : PAPER 0 : INPUT

2 PAPER 4 : CIS

passwords black ink on black
paper - invisible

clear window to light
grey

C2-15

DATA ENTRY The keyboard may be used to input:

a line of BASIC

data in response to an INPUT statement

a single character in response to INKEYS or PAUSE

In the last case, the character input does not appear on the
screen. In the first two cases the current input is reflected
on the display as described below.

When a line of data is expected, a cursor appears in the
window associated with the channel being used for input. Data
characters are entered simply by typing the characters
required on the keyboard. As each character is typed it is
added to the current data-line and displayed on the screen at
the current cursor position. The cursor is then moved one
character position to the right - unless it is already at the
right-hand edge of the window. In this case the cursor is
moved to the left-hand edge of the next line down in the
window, scrolling the contents of the window up one line if
the cursor is already in the bottom line of the window.

The maximum number of characters that may be input is limited
by the size of the window, such that the whole of the data-
line may always be displayed. An attempt to input more
characters than the window allows, or to input an unrecognised
key-combination causes the generation of an error-tone. The
offending character is not added to the data-line and the
cursor is not moved.

Both the RETURN and ENTER keys terminate input and cause
the data-line as displayed to be sent to the channel
requesting input. If the input is in response to an AUTO or
EDIT command, ENTER has the additional effect of
terminating the AUTO or EDIT statement.

Key controls Several keys are also usable as control or editing keys. These
are described below:

C2-16

Cursor control
keys

RETURN

ALT/RETURN

A line of data or a line of BASIC program can occupy several
lines on the screen. In the following explanation, such a
multiple line of data or program is called a data-line, while
a single physical line on the screen is simply called a line.

The cursor control keys are used to move the cursor both
within a data-line and from one data-line to the next. Within
a data-line the cursor moves one character position in the
direction indicated by the arrow for each key depression. If
the cursor is at the left hand edge of the window, —
left-arrow moves it to the right hand end of the line above.
If the cursor is at the right hand edge of the window, —►
right-arrow moves it to the left hand end of the following
line. If an attempt is made to move the cursor off the
data-line using the left- or right-arrow key, the key will be
ignored, f up-arrow moves the cursor up one line, except if
the cursor is at the top line of the display of the data-line.
In this case it causes termination of input and the data-line
is sent to the channel requesting input. If the input request
is in response to part of an EDIT sequence, termination by
up-arrow causes the previous line in the program-sequence to
be displayed for editing. down-arrow has a similar effect,
either moving down one screen line or, if the cursor is at the
bottom of the data-line display -terminating input, sending
the line and going onto the next program line in an edit­
sequence.

The key combinations CTRL/left-arrow and CTRL/right-arrow may
be used to skip to the start or end of the data-line
respectively. At any position in the display, CTRL/up-arrow
has the same effect as up-arrow used on the top line and
CTRL/down-arrow has the same effect as down-arrow used on the
bottom line.

RETURN terminates the input and sends the data-line as
displayed to the channel that was requesting input. Unlike
ENTER, it does not cause termination of the AUTO or EDIT
command, if any, that caused the request for input.

ALT/RETURN has the same effect as RETURN, except that if the
current cursor position does not coincide with the end of the
data-line, all displayed characters of the data-line under and
following the displayed cursor are redisplayed as spaces and
removed from the data-line before it is sent to the channel.

C2-17

DELete

INS (SHIFT/
DEO------------

Remove (CTRL/
DED------------

Break (CTRL/
SPACE)

Use of the DEL key changes the character immediately before
the current cursor position in the data-line to a space and
moves the cursor onto that space. The display is updated
accordingly.

If the cursor is at the beginning of the data-line, DEL has no
effect.

Use of the INSERT key combination enters a space at the
current cursor position in the data-line, after first
extending the data-line by one character and moving all
characters under and to the right of the cursor by one
position to the right. The display is updated accordingly. If
the data-line is already equal to the maximum size defined by
the window the data-line cannot be extended and the last
character in the data-line is lost.

The cursor is not moved.

Remove is the inverse of INS. Use of the REMOVE key
combination removes the character under the cursor from the
data-line, moves all characters following by one position
left, and shortens the data-line by one character. The display
is updated to reflect the data-line, replacing the previously
last character by a space. The cursor is not moved.

Use of the break key combination aborts any current processing
and causes a prompt for the next command line.

C2-18

DATA TYPES
VARIABLES

Integer

Integers are whole numbers in the range -32768 to +32767.
Variables are assumed to be integers if the variable
identifier is suffixed with a percent (%). There are no
integer constants in TO.MTO BASIC; all constants are stored as
floating point numbers.

Examples

1 counter^

2 size_limit%

3 thi s_i s_an_i nteger_vari abl eX

Floating point Floating point numbers are in the range +_ (10-615 to
10615) with 8 significant digits. Floating point is the
default data type. All constants are held in floating point
form and can be entered using exponent notation.

Examples

1 current_accumulation

2 76.2356

3 354E25

4 25

String A string is a sequence of allowable characters up to 32767
characters long. Variables are assumed to be type string if
the variable name is suffixed by a $. String data is
represented by enclosing the required selection of characters
in either single or double quote marks. A string must be
terminated with the same type of quote mark as it is started
with. A string in double quote marks can be included inside a
string enclosed in single quotes or vice versa.

Examples

1 string_variables$

2 "this is string data"

C2-19

Name Type name has the same form as a standard TONTO BASIC
identifier and is used by the system to name devices.

Examples

1 MDVl_data_file

2 PRN

C2-20

DEVICES A device is a piece of equipment on the TONTO to which data
can be sent and from which data can be received.

Since the system makes no assumptions about the ultimate I/O
device which will be used, the I/O device can be easily
changed and the data diverted between devices. For example, a
program may want to output to a printer at some point during
its run. If the printer is not available, the output can be
diverted to a Microdrive file and stored. The file can be
printed at a later date. I/O on the TONTO can be thought of as
being written to and read from a logical file which is in a
standard device independent form.

All device specific operations are performed by individual
device drivers specially written for each device on the TONTO.

When a device is activated, a channel is opened and linked to
the device. To open a channel device correctly, basic
information must be supplied to initialise the device driver.
This extra information is appended to the device name. The
combination of a device name and appended information is
called a device specification.

The device specification must conform to the rules for a
BASIC type name though it is also possible to build it up as a
string expression.

Each logical device on the system will attempt, where possible
to provide defaults for omitted extra information.

Devices The physical devices on the TONTO are referred to by the
following names:

Name Device

con Console, consisting of keyboard and screen

mdvl Microdrive 1, the left-hand microdrive

mdv2 Microdrive 2, the right-hand microdrive

prn Printer, the optional printer

scr Screen

C2-21

Console

When a channel is connected to a device, further information
may be needed about the device. For the console and screen
devices, this is the area of the screen to be used - the
window specification. For the microdrives, this additional
information is the name of the file to be used.

The next sections show how this information is expressed for
each type of device.

For the console device

Select Console Device
Underscore
Window Width
Separator
Height
Separator read as AT
Window X coordinate
Separator
Window Y coordinate
Separator
length of keyboard type
ahead buffer

con wXhAxXy k Console I/O

[wXhj - window width, height
LAxXyJ - window X, Y coordinate
[kJ - keyboard type ahead buffer length
(bytes)

Default

con_480x200a0x0_128

Examples

1 OPEN #4,con_24x50a0x0_32

2 OPEN #8,con_24x50

3 OPEN #7,con_24x50al8xl0

C2-22

LmdvJ - select microdrive device

Screen scr wXhAxXy Screen Output

[wXhJ - window width, height
LX/XyJ - window X,Y coordinate

Default

scr_480x200a0a0x0

Examples

OPEN #4, scr_12xl0a24x50

OPEN #5, scr_12xl0

Microdrives mdvn name Microdrive File Access

[nJ - microdrive number
Lz’zzneJ - microdrive file name

Default

no default

Examples

1 OPEN #9, mdvl_data_file

2 DELETE mdv2_test_program

Printer prn_Printer output

Default

prn

Examples

1 OPEN #4, PRN

2 COPY mdvl_results TO prn

C2-23

DIRECT COMMAND BASIC makes a distinction between a statement typed in
preceded by a line number and a statement typed in without a
line number. Without a line number, the statement is a direct
command and is processed immediately by the command
interpreter. For example, if RUN is typed in on the command
line and is processed, the effect is that the program starts
to run. If a statement is typed in with a line number, the
syntax of the line is checked and any detectable syntax errors
are reported. A correct line is entered into the program and
stored. A series of statements constitutes a program, which is
only executed when the program is started with the RUN or
GOSUB GOTO command.

Not all BASIC statements make sense when entered as a direct
command. For example, END FOR and END DEFine when entered
by themselves in this way.

Not all BASIC statements make sense when included in a
program. For example, if AUTO and EDIT are included in a
program, they have no effect while the program is running.

Most BASIC statements can be used both as direct commands and
within a stored program.

C2-24

ERROR HANDLING Errors are reported by TONTO BASIC in a standard form:

At line line number error text

when the error is in a running program

error-text

when the error is in a direct command

Where the line number is the number of the line where the
error was dete"cted and the error_text is one of the messages
listed below:

Already exists
The file system has found an already existing file with
the same name as a new file to be opened

Bad line
BASIC syntax error has occurred

This error can also occur after an error in a function or
procedure call. It prevents any lines being typed in
which would modify the program. Typing NEW or CLEAR
modifies this condition.

Bad medium
The medium is possibly faulty

Bad name
The file system has recognised the name, but there is a
syntax or parameter value error.

In TONTO BASIC it means that a name has been used out of
context. For example, a variable has been used as a
procedure

Bad parameter
There is an error in the parameter list of a system or
BASIC procedure or function call.

An attempt was made to read data from a write only device

Buffer full
An I/O operation to fetch a buffer full of characters
filled the buffer before a record terminator was found

C2-25

Catalogue in use
Can only occur when opening a file for write access or
creating a new file. An activity has opened the catalogue
file. Try again later

Channel not open
Attempt made to read, write or close a channel which has
not been opened

End of file
End of file detected during input or DATA exhausted when
READing

Error in expression
An error was detected while evaluating an expression

Internal tables full
The most likely cause of this error is that the program
requires more memory, which cannot be allocated because
the system’s segment tables are full

In use
The file system has found that a file or device is
already exclusively used

Media failure
A cartridge cannot be read

Not complete
An operation has been prematurely terminated

Not formatted
lhere has been an attempt to use a cartridge that is not
formatted or not in place

Not found
File system, device, medium or file cannot be found

BASIC cannot find an identifier. This can result from
incorrectly nested structures

Not implemented
You have attempted to use a feature which is not
implemented

Out of memory
BASIC has insufficient free store

C2-26

Out of range
Usually results from an attempt to write outside a window
or an attempt to reference an array element with an
incorrect index

Out of sectors
Returned from microdrive access:

Input: A sector of the file is missing
Output: The cartridge is full

Overflow
Arithmetic overflow, division by zero, square root of a
negative number, etc.

Parity error
Data read from a cartridge is corrupt

Read only
There has been an attempt to write data to a shared file

Sound queue full
Either the system sound queue or BASIC’s sound queue is
full

Write protected
The lug on the cartridge has been removed and the
cartridge cannot be written to

Wrong format
The cartridge has been formatted, but not as a TONTO
cartridge

Error recovery After an error has occurred, the program can be restarted on
the next statement by typing

CONTINUE

If the error condition can be corrected without changing the
program, the program can be restarted on the statement which
triggered the error. Type

RETRY

C2-27

FILE TYPES
AMD FILES

All input/output on the TONTO is to or from a channel which
references a logical device. Certain devices can support more
than one channel at a time, e.g. a microdrive. Such a device
is file-orientated.

Although all files contain data, each is expected to conform
to one of the following types:

Text Consists of strings interspersed with and terminated by a line
feed character. Generated by SAVE, OPEN NEW and COPY. Read
using INPUT, INKEYS, LRUN etc.

Application A special form of text file generated by the PUBLISH
command. Read as an ordinary text file.

Image Consists of an image of memory. Generated by the SBYTES
command. Read using LBYTES or INKEYS.

C2-28

FUNCTIONS AND
PROCEDURES

BASIC functions and procedures are defined with the DEFine
FuNction and DEFine PROCedure statements.

A function is activated (or called) by typing its name at the
appropriate point in a BASIC expression. The function must be
included in an expression because it is returning a value and
the value must be used.

A procedure is activated (or called) by typing its name as the
first item in a BASIC statement.

Data can be passed into a function or procedure by supplying a
list of actual parameters when it is called. The formal
parameters supplied with the definition are assigned the
values of the actual parameters.

Since the actual parameters are actual expressions, they must
have an actual type associated with them. The formal
parameters are merely used to indicate how the actual
parameters must be processed and so have no type associated
with them. The items in each list of parameters are paired off
in order when the function or procedure is called and the
formal parameters become equivalent to the actual parameters.
There are two distinct ways of using parameters:

If the actual parameter is a single variable, then any
data assigned to the formal parameter in the function or
procedure is also assigned to the corresponding actual
parameter

If the actual parameter is an expression, assigning data
to the corresponding formal parameter has no effect
outside the procedure. Note that a variable can be
turned into an expression by enclosing it within
brackets

It is not always necessary to specify a full set of actual
parameters. For example the BASIC PRINT statement is
implemented as a procedure and can accept a variable number of
parameters of varying types. Any formal parameter which has no
corresponding actual parameter may have a spurious type and/or
value. An error will usually result if the parameter is
accessed.

C2-29

Variables can be defined to be local to a function or
procedure with the LOCal statement. Local variables have no
effect on similarly named variables outside the function or
procedure in which they are defined, and so allow greater
freedom in choosing sensible variable names without risking
corrupting external variables. Local variables are available
to any nested function or procedure, unless they are again
defined to be local.

Functions and procedures in BASIC can be used recursively.
That is, a function or procedure can call itself either
directly or indirectly.

C2-30

IDENTIFIER A BASIC identifier is a sequence of letters, digits and
underscores.

Examples

1 a

2 limit_l

3 current_guess

4 B0ND_007_james

An identifier must begin with a letter followed by a sequence
of letters, digits and underscores, and can be up to 255
characters long, lipper and lower case characters are
equivalent.

BASIC keywords cannot be used as identifiers. There are other
reserved words in BASIC which cannot be used as identifiers.
For a full list of reserved words see Appendix 2.

Identifiers are used in the BASIC system to identify
variables, procedures, functions, repetition loops, etc.

WARNING
No meaning can be attributed to an identifier other than its
ability to identify constructs to BASIC. BASIC cannot infer
the intended use of an identifier from the identifier’s name.

C2-31

KEYWORDS Keywords are identifiers which are defined in the TONTO BASIC
Keyword Reference Guide. Keywords have the same form as a
BASIC standard identifier. The case of the keyword is not
significant. Keywords are echoed as a mixture of upper and
lower case letters and are always reproduced in full. The
upper case portion indicates the minimum you need type in for
the keyword to be recognised by the system.

Already existing keywords cannot be used as ordinary
identifiers within a BASIC program.

Certain further keywords are reserved in TONTO BASIC for
possible future use. These are:

ARC
ARC R
BAUD
BLOCK
BORDER
CIRCLE
CIRCLE_R
CURSOR
DIR
ELLIPSE
ELLIPSE_R
EXEC
EXEC W
FILL­
FLASH
FORMAT
KEYROW
LINE
LINE R
MODE
MOVE
NET
OVER
PAN
PENDOWN
PENUP
POINT
POINT R
RECOL-
SCALE
SCROLL
SEXEC
STRIP
TURN
TURNTO

C2-32

Use of these words in a BASIC program will result in an error
report being returned to the screen.

There are other reserved words in BASIC which cannot be used
as identifiers. For a full list of reserved words see Appendix
2.

C2-33

MATHS FUNCTIONS TONTO BASIC has the standard trigonometrical and mathematical
functions

Function Name Usual algebraic
notation

COS cosine COS
SIN si ne si n <=<
TAN tangent tan ex.
COT cotangent cot ex
ACOS arccosi ne cos-1
ACOT arccotangent cot-1 =*
ASIN arcsine sin-1 -x
ATAN arctangent tan-1 ex.
EXP exponential ex
LN natural logarithm In
LOG1O common logarithm log

I NT integer LxJ

ABS absolute value 1*1

RAD convert to radians
DEG convert to degrees
PI value of 'rx TV
SQRT square root v/x~
RND random number

C2-34

MICRODRIVES Microdrives provide the main permanent storage on the TONTO.
Each Microdrive cartridge has a potential capacity of up to
about 100 Kbytes.

Each cartridge must be formatted before use and holds
approximately 200 sectors of 512 bytes per sector. Each
Microdrive file is identified using a standard BASIC file
name.

A cartridge can be write-protected by removing the small lug
on the righthand side.

General care Physically, each Microdrive cartridge contains a 200 inch loop
of high quality video tape which can revolve completely in
7 1/2 seconds.

NEVER touch the tape with your fingers or insert anything into
the cartridge.

NEVER turn the computer on or off with cartridges in place.

ALWAYS store cartridges in their sleeves when not in use.

ALWAYS insert or remove cartridges from the Microdrive slowly
and carefully.

ALWAYS ensure that the cartridge is firmly installed before
starting the Microdrive.

NEVER move the TONTO with cartridge installed - even if it is
not spinning.

NEVER touch the cartridge while the drive is in operation.

You must format a new blank TONTO Microdrive cartridge to
prepare it for use by a TONTO. Any information already on a
cartridge is lost when it is formatted. Formatting a cartridge
takes 30 to 40 seconds. For details of how to format
cartridges see the Handbook.

C2-35

OPERATORS

Operator Type Function

numeric logical
stri ng type 2 comparison

== floating almost equal **
stri ng type 3 comparison

+ numeri c addi tion
- numeric subtraction
/ numeric division
* numeric multipiication
< numeri c less than

string type 2 comparison
> numeric greater than

string type 2 comparison
<= numeric less than or equal to

string type 2 comparison
> = numeric greater than or equal to

stri ng type 2 comparison
<> numeric not equal

stri ng type 3 comparison
A stri ng concatenation
&& bi twi se AND
II bi twi se OR

bi twise XOR
bi twi se NOT

OR logical OR
AND logical AND
XOR logical XOR
NOT logical NOT
MOD integer modulus
DIV integer di vi de
INSTR stri ng type 1 string comparison
A numeric raise to the power
— numeric unary minus
+ numeric unary plus

** almost equal is defined as equal within 1 part in 107

If the specified logical operation is true,a value not equal
to zero is returned. If the operation is false, a value of
zero is returned.

C2-36

Precedence The precedence of BASIC operators is defined below. If the
order of evaluation in an expression cannot be deduced from
this, the relevant operations are performed from left to
right. The inbuilt precedence of BASIC operators can be
overriden by enclosing the relevant sections of the expression
in parentheses.

highest

1owest

unary plus and minus
string concatenation
string search
exponentiation
multiply, divide, modulus and integer divide
add and subtract
logical comparison
NOT
AND
OR and XOR

C2-37

PERMANENT
STORE

The TONTO contains 2K bytes of non-volatile memory known as
the Permanent Store. Data stored in this memory is preserved
when the TONTO is switched off, provided that battery power is
available.

The Permanent Store is organised as a collection of entries
identified by an entry number. Each entry may be from zero to
255 bytes in length and the identifying numbers are in the
range 0 to 65535. All entries in the Permanent Store may be
accessed from TONTO BASIC. However, entries with identifiers
in the range 0 to 255 are used by the system. Altering the
values of such entries may have undefined effects.

Entries in the Permanent store are manipulated using the
following TONTO BASIC keywords:

SET PSE create or alter a Permanent Store Entry
PSET return the value of a Permanent Store Entry as a

string of characters
DEL_PSE delete a Permanent Store Entry

C2-38

PIXEL
COORDINATE
SYSTEM

The pixel coordinate system is used to define the positions
and sizes of windows on the TONTO screen. The coordinates
system has its origin in the top left hand corner of the
default window (or screen). The system uses the nearest
character position. The pixel coordinate system is shown
below:

(0.479)
(0.0)

(2390)

C2-39

PROGRAM A program consists of a sequence of numbered lines, where each
line may contain one or more TONTO BASIC statements. Line
numbers are in the range of 1 to 32767.

Example

1 10 PRINT “This is a valid line number"

2 10 REM a small program
20 PRINT “Guess a number between 1 and 100“
30 PRINT “Double it and add 1“
40 PRINT "Multiply by 3 and add 4"
50 PRINT “Add 5 and divide by 2“
60 INPUT "What number do you get to?"Ians
70 LET orig=(ans-6) DIV 3
80 CSIZE 3,1:CLS
90 PRINT "Your number was’lorig

C2-40

REPETITION Repetition in TONTO BASIC is controlled by two basic program
constructs. Each construct must be identified to TONTO BASIC.

REPEAT identifier FOR identifier = range
statements statements

END REPEAT identifier END FOR identifier

These two constructs are used in conjunction with two other
TONTO BASIC statements:

EXIT identifier NEXT identifier

Processing a NEXT statement either passes control to the
statement following the appropriate FOR or REPeat
statement or, if a FOR range has been exhausted, to the
statement following the appropriate END FOR.

Processing an EXIT statement passes control to the statement
after the END FOR or END REPeat selected by the EXIT
statement. If an EXIT is used in a loop, the loop must be
terminated by END FOR or END REPeat. EXIT can be used to
exit through many levels of nested repeat structures. EXIT
should normally be used in REPeat loops to terminate the
loop on some condition.

C2-41

SCREEN The screen is 480 pixels across and is 256 pixels deep. The
bottom 16 pixels are used to display the notice board and are
not available to BASIC programs (see Handbook). The display
comprises a four level scale from black to white.

When BASIC is entered, the total screen area is composed of 3
windows.

Window #0 is reserved for inputting BASIC commands and program
lines, and displaying BASIC error messages. The window is
initially defined to be the full width of the screen and
occupies the last four lines above the Noticeboard.

Window #2 is reserved for displaying program lines as they are
entered, or as they are requested by the LIST command to the
default device. This window is defined to be the full width of
the screen and occupies the remaining 20 lines above window
#0.

Window #1 is the default application display and input window.
It initially occupies exactly the same area as the listing
window but has a background colour of dark grey.

The size and colour attributes of window #2 can, of course, be
changed by a BASIC program. All window-based commands (e.g.
CLS, AT, PRINT) are directed to this window if the channel
parameter is omitted from the command.

C2-42

SEGMENT The memory on the TONTO is organised into segments whose size
is a multiple of 512 bytes. Segments may be moved around in
the memory by the system manager to make room for loading
applications, creating new segments and so on. When accessing
memory within a segment, it is necessary to fix the position
of the segment for the duration of the access. Such action is
termed "freezing the segment". When access to a segment has
finished, the segment will remain frozen unless explicitly
"thawed".

The user of BASIC can obtain use of extra memory with the
SEGMENT function. BASIC will ensure that such a segment is
frozen while it is accessed, and thawed afterwards, to make
maximum use of the system’s resources. Segments may be
accessed from BASIC using PEEK, PEEK W, PEEK L, POKE, POKE W,
POKE_L, CALL, LBYTES and SBYTES. “ “ “

C2-43

SLICING Under certain circumstances, it is possible to reference more
than one element in an array - that is, slice the array. The
array slice can be thought of as defining a sub array or a
series of sub arrays to BASIC. Each slice can define a
continuous sequence of elements belonging to a particular
dimension of the original array. The term array in this
context can include a numeric array, a string array or a
simple string (an array of characters).

It is not necessary to specify an index for the full number of
dimensions of an array. If a dimension is omitted, slices are
added which select the full range of elements for that
particular dimension - that is the slice (0 TO—). TONTO
BASIC can only add slices to the end of the list of array
i ndices.

An array slice or a string slice may be specified as the
source of an assignment statement. A string slice may be
specified as the destination of such an asignment.

Examples

1 PRINT array (3, 1 TO 2) Prints array (3, 1) and array
(3, 2)

2 PRINT letters! (4 TO) Prints the contents of
letters! from the fourth
character to the end

3 PRINT num (4 TO 5, 6 TO 7) Prints num (4, 6), num (4, 7)
num (5, 6) and num (5, 7)

WARNING
Assigning data to a sliced string variable may not have the
desired effect. Assignments made in this way do not update the
length of the string and so it is possible that the system
will not correctly process the assignment. The length of a
string variable is only updated when an assignment is made to
the whole string.

C2-44

SOUND Sound on the TONTO is generated by the system's second
processor. A sound consists of a sequence of tones, each
defined by a pitch and a duration, or a silence and a
duration. A zero length silence at the end of a sequence
causes the sequence to be repeated so that sounds of
indefinite length may be generated.

The sound generator is also used for system functions such as
telephony and may be used by other concurrent activities.
Contention for the sound generator is handled by restricting
any sound to a maximum of 2 seconds, if another sound is
waiting to be output. Only a small number of sounds may be
queued for output.

A sound is queued for output using the BEEP command. This
command can also be used to cancel all sounds if used with no
parameters. The function BEEPING may be used to check for
sound output, and it returns the number of sounds currently
being queued or output by the instance of BASIC invoking the
function. It cannot be used to determine if any other activity
is using the sound generator.

C2-45

START UP BASIC is entered by keying 7 from the Top Level Menu. If BASIC
is not already in store, the message "Loading BASIC" appears
against BASIC's menu entry and the system searches both
microdrives for the program ICLBASIC, starting with the right­
hand drive. If ICLBASIC is not on any cartridge on the
microdrives, the message "NEEDS BASIC" appears against BASIC's
menu entry in inverse video. If ICLBASIC is found it is
loaded.

Once BASIC is in store it is activated by the system. The
screen shows a copyright message for a few seconds and then
clears. BASIC is ready for use when the cursor appears in the
command window near the base of the screen.

It may happen that BASIC can be loaded but has insufficient
store to complete its initialisation. In this case, the
message "BASIC - NO STORE" appears in the noticeboard and the
start up is abandoned.

BASIC may also be entered by selecting an application written
in TONTO BASIC. The same start up sequence applies, except
that any messages will appear against the menu entry for the
selected application. When BASIC is ready to load the selected
application, a command will appear in the command window, for
example:

MRUN MDV1_CONFIGURATOR

and the command is executed to load and enter the application.

C2-46

Default screen The TONTO has three default channels which are linked to three
default windows.

Channel 0 is used for listing commands and error messages,
channel 1 for program output, and channel 2 for program
listings. The default channel can be modified by omitting the
optional channel specifier in the relevant command.

The initial channels are opened as though the following
commands had been executed:

OPEN #O,CON 480 x 40a0x200 128
PAPER #0,0:~INK#0,7:CLS#0
OPENfl, CON 480 x200a0x0 128
PAPER#!,2 INK#1,7:CLS#T
OPEN #2, CON 480x200a0x0_128
PAPER#2,1: INK#2,7:CLS#2

C2-47

STATEMENT A BASIC statement is an instruction to the TONTO to perform a
specific operation.

For example...

LET a = 2

assigns the value 2 to the variable identified by a.

More than one statement can be written on a single line by
spearating the individual statements from each other by a
colon (:).

For example...

LET a = a + 2 : PRINT a

adds 2 to the value identified by the variable a and stores
the result back in a. The answer is then printed out.

If a line is not preceded by a line number, the line is a
direct command and BASIC processes the statement immediately.
If the statement is preceded by a line number, the statement
becomes part of a BASIC program and is added into the BASIC
program area for later execution.

Certain BASIC statements can have an effect on the other
statements over the rest of the logical line in which they
appear, for example IF, FOR, REPeat, REMark.

C2-48

STRING ARRAYS String arrays and numeric arrays are essentially the same:
STRING VARIABLES however, there are slight differences in their treatment by

BASIC. The last dimension of a string array defines the
maximum length of the strings within the array. String
variables can be any length. Both string arrays and string
variables can be si iced (see page Bll-2).

String lengths on either side of a string assignment need not
be equal. If the sizes are not the same, either the right hand
string is truncated to fit, or the length of the left hand
string is reduced to match. If an assignment is made to a
sliced string, the hole defined by the slice is padded with
spaces, if necessary.

It is not necessary to specify the final dimension of a string
array. Not specifying the dimension selects the whole string
while specifying a single element picks out a single
character, and specifying a slice defines a substring.

COMMENT
Unlike many BASICS, TONTO BASIC does not treat string arrays
as fixed length strings. If the data stored in a string array
is less than the maximum size of the string array then the
length of the string is reduced.

WARNING
Assigning data to a sliced string array or string variable may
not have the desired effect. Assignments made in this way do
not update the length of the string and so it is possible that
the system will not recognise the assignment. The length of a
string array or a string variable is only updated when an
assignment is made to the whole string.

C2-49

STRING
COMPARISON

The lexical ordering of characters for a string comparison is
as below:

Order
space

.)-0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNn0oPp
QqRrSsTtUuVvWwXxYyZz I)*+,-/:;<=>?0C\3 '"{f J ~

The relationship of one string to another may be:

equal All characters are the same or equivalent

lesser The first character of the first string which is
different from the corresponding character in the
second string, comes before it in the defined order

greater The first character of the first string which is
different from the corresponding character in the
second string, comes after it in the defined order

Types of

Type Character comparison Embedded numeric sequences

0 case dependent compared as characters
1 case independent compared as characters
2 case dependent compared as numbers
3 case independent compared as numbers

Usage type 0 Filename comparisons
type 1 Variable comparison
type 2 BASIC <,<=,=,>=,> and <>
type 3 BASIC = = (equivalence)

C2-5O

WINDOWS

Parts

Windows are areas of the screen which behave, in most
respects, as though each individual window is a screen in its
own right; that is, the contents of the window scrol1 when it
has become filled by text, and a window can be cleared with
the CLS command, and so on.

Windows can be specified and associated with a channel when
that channel is opened. The current window size can be changed
with the WINDOW command. Output can be directed to a window
by printing to the relevant channel. Output is from the
current cursor position, which can be positioned at any column
and row within the window with the AT commnd.

The channel number of a window can be specified on an INPUT
command. The cursor appears in the selected window to indicate
that subsequent input will be to that window.

The CLS (clear screen) command accepts an optional parameter
to define part of the window for its operation. This part is
defined below:

parameter part

0 all lines
1 all lines above the cursor
2 all lines below the cursor
3 the line containing the cursor
4 as 3, but only characters to the right

of and including the cursor

C2-51

The following commands are those you can use in association
with windows:

Command Function

AT
CLOSE
CLS
CSIZE
INK
INPUT
OPEN

position cursor within a window
release a channel associated with a window
clear the screen
define character size for a window
define the ink colour for a window
receive data from a window
associate a channel with a window and specify
its initial size and position

PAPER
PRINT
UNDER
WINDOW

define the paper colour for a window
display text in a window
define underlining for a window
re-define a window

C2-52

Part D Keywords Reference Guide

1 Surma ry 01-1

2 Keywords D2-1

Lists TONTO BASIC keywords in alphabetical order as follows

ABS DLINE NEXT SEGMENT
ACOS EDIT NOT SELect ON
ACOT ELSE ON SET PSE
ADATE END ON...GOSUB SIN-
AMD END DEFine ON. ..GOTO SQRT
ASIN END FOR OPEN STEP
AT END IF OPEN IN STOP
ATAN END REPeat OPEN-NEW TAN
AUTO END SELect OR THEN
BEEP EOF PAPER TO
BEEPING EXIT PAUSE UNDER
BYE EXP PEEK VERS
CALL FILLS PEEK W WIDTH
CHRS FOR PEEK L WINDOW
CLEAR GOSUB PI XOR
CLOSE GOTO POKE
CLS IF POKE W
CODE INCLUDE POKET
CONTINUE INK PRINT
COPY INKEYS PSES
COPY N INPUT PUBLISH
COS INSTR RAD
COT I NT RANDOMISE
CSIZE LBYTES READ
DATA LEN REMAINDER
DATES LET REMark
DAYS LIST RENUM
DEFine LN REPeat
DEFine FuNction LOAD RESTORE
DEFine PROCedure LOCAL RETurn
DEG LOG1O RETRY
DELETE LRUN RND
DIMN MERGE RUN
DEL PSE MISTake SAVE
DIM- MOD SBYTES
DIV NEW SDATES

D-i

1 Summary

Section 2 of the Keyword Reference Guide lists all BASIC
keywords in alphabetical order. A brief explanation of the
keyword's function is given followed by simple definition of
its purpose in BASIC and examples of its use.

Each keyword entry shows to which group of operations it
relates, under the heading, Type. For example ABS is a
mathematical function and further information can be obtained
from the Maths Function sections of the Concept Reference
Guide.

Sometimes keywords are related to other keywords and it is
necessary to deal with them together: for example IF, ELSE,
THEN, END IF, are all listed under IF, as well as their
separate entries. The notes section of each keyword tells you
which keywords cannot be used in isolation (e.g. ELSE,
THEN).

The full syntax of TONTO BASIC is listed in Appendix 1.

Dl-1

ABS

Type Mathematical function

Purpose This function returns the absolute value of a number. For zero
or a positive number the value is not changed. For a negative
number the value is equal to zero minus the number. The ABS
function is often used to calculate the difference between two
values when you do not know which is the larger of the two.
For example ABS(4-5) or ABS(5-4) will always yield 1

Example 100 Deviation = ABS (Last_Guess - New_Guess)

Description A mathematical function returning the unsigned value of its
parameter

Format ABS {^numeric expression*)

ACOS

Type Mathematical function

Purpose To calculate an angle whose cosine is known

Examples PRINT ACOS (0.5)

100 angle = DEG(ACOS(thi)) :REHark obtain angle in degrees

Description A function returning the arc-cosine of its parameter. The
result is in radian measure in the range 0 to -n

Format ACOS num eric expression*) range -1 to 1

Associated
keywords

ACOT, ASIN, ATAN, COS, COT, DEG, RAD, SIN, TAN

D2-1

ACOT

Type Mathematical function

Purpose To calculate an angle whose cotangent is known

Example PRINT ACOT (0)

Description A function returning the arc-cotangent of its parameter. The
result is in radian measure in the range -*k/2 to 7^/2

Format ACOT (^numeric expression^)

Associ ated
keywords

ACOS, ASIN, ATAN, COS, COT, DEG, RAD, SIN, TAN

D2-2

ADATE

Type Clock procedure

Purpose This procedure allows the system clock to be adjusted forwards
or backwards by a given number of seconds

Examples ADATE -60 Set the clock back one minute

ADATE 30*60 Advance the clock by 30 minutes

120 b$=DATE$
130 IF b$(6 TO 11) = "OCT 28"
140 ADATE -60*60
150 END IF :REMark BST ends

Description A BASIC procedure that allows relative adjustments to be made
to the system clock

Format ADATE <numer*ic expression}

Associated
keywords

DATE, DATES, DAYS, SDATE

D2-3

AND

Type BASIC operator

Purpose To form the logical AND of two truth values

Examples 60 IF hot AND sunny THEN go_to_the_beach

If a >3 AND a <9 THEN PRINT “In range"

Description Thw two operands are treated as truth values, zero being
false, non-zero true. The result is 1 (i.e. true) if both
operands are true, 0 (i.e. false) if either or both of the
oerands is false. To form the bitwise AND of two operands you
should use the operator &&

Format ‘boolean expression* AND ‘boolean expression*

Associated
keywords

NOT, OR, XOR

ASIN

Type Mathematical function

Purpose To calculate an angle whose sine is known

Examples PRINT ASIN (0.5)

40 angle=DEG(ASIN(bval)) :REMark Angle fro« Sine

Description A function returning the arc-sine of its parameter. The result
is in radian measure in the range -tx/2 to tt/2

Format ASIN (‘numeric expression*) range -1 to 1

Associated
keywords

ACOS, ACOT, ATAN, COS, COT, DEG, RAD, SIN, TAN

D2-4

AT

Type Screen handling procedure

Purpose This procedure allows the cursor to be positioned at any
character position in the current window prior to reading from
or writing to the screen. It is a channel based command that
defaults to the display channel. Both Row and Column arguments
are defined as offsets in the current character height and
width from the top left hand corner of the window

Examples AT 0,0 Set the cursor to the top left hand of display
window

30 AT #9,3,2 Set the cursor to row 3, column 2 in screen
channel 9

Descri pt ion A channel based cursor control procedure which allows the
cursor to be positioned relative to the selected window's
character coordinates

Format AT [#<channel number>,] <row>, <colivrm>

Associated
keywords

CSIZE, PRINT, INPUT, INKEYS, CLS

Notes In other BASIC implementations this procedure may be called
POS and/or may be an integral part of the PRINT/INPUT
procedures

D2-5

ATAN

Type Mathematical function

Purpose To calculate an angle whose tangent is known

Examples PRINT ATAN (PI / 8)

150 LET Erx = ABS (Angle - ATAN (SIN(Angle)/COS(Angle)))

1000 a= ABS(b-ATANd))

Description A function returning the arc-tangent of its parameter. The
result is in radian measure in the range -'kH to tv/2

Format ATAN (< nun eric expression*)

Associated
keywords

ACOS, ACOT, ASIN, SIN, COS, COT, DEG, RAD, TAN

D2-6

AUTO

BASIC commandType

Purpose When generating a BASIC program it is common to assign to each
line a number which increments uniformly. To save having to
type in the line number each time, this command can be used to
make the system present each new line number AUTOmatically.
Used on its own the system will present first 100, then 110,
120, 130 etc. Additionally both the first and subsequent line
numbers may be controlled by specifying the starting value and
the increment between lines. If the first parameter is
omitted, it takes a default value of 100. If the second
parameter is omitted, it takes a default value of 10. AUTO
will continue until it is cancelled by the BREAK key or
SHIFT/ENTER key sequence, or until the line number exceeds
32767.

Examples AUTO Present line numbers 100, 110, 120 etc

AUTO 5,5 Present line numbers 5, 10, 15, 20 etc

AUTO 10 Present line numbers 10, 20, 30 etc

description A command which allows you to enter lines without first typing
in the number of the line

Format AUTO line*] I^increment*J

Associated
keywords

RENUM, EDIT

Notes 1 As AUTO is a direct command, it cannot reasonably be
used in a program

2 Changing the line number (and then sending the line)
causes an edited line to be inserted at the point
specified in the program. The original line is left
unchanged. This allows copying of lines but be careful. If
the line number of the edited line corresponds to an
existing line, that line is replaced

02-7

BEEP

Sound control procedureType

Purpose To permit or stop
to its parameters.
where the pair has

the generation of various sounds according
Parameters must be supplied in pairs F,D
the following significance:

F = 1 to 255 :
= 0 :

D = 255 :
= 1 to 254 :
= 0 :

tone frequency is 2400/F hertz
no sound (i.e. silence)
sound is to last indefinitely
sound is to last for D/50 seconds
the sound sequence is to be repeated
the start

from

BEEP with no parameters stops any sound currently being
output

Examples 120 BEEP 1,255 : REMark Continuous high pitch

180 IF BEEPING THEN BEEP :REMark Stop the noise

320 BEEP 2,8,4,8,0,0 :REMark Siren

410 BEEP 8,8 :REMark Raspberry

Description A BASIC procedure giving access to the system sound generator

Format BEEP [<frequency>, <duration> frequency >t <duration>]^

Associated
keyword

BEEPING

Notes 1 As the TONTO tone generator is shared between many tasks,
the program should restrict its sound output to a minimum

2 BEEP 2, 2 is not allowed

D2-8

BEEPING

Type Sound control function

Purpose To discover whether all sounds generated by the program have
completed

Examples 210 IF BEEPING THEN PRINT "I'm a noisy program"

Description A function returning a zero result if all BEEP commands have
been fully processed; non-zero otherwise

Format BEEPING

Associated
keywords

BEEP

BYE

Type Program control procedure

Purpose To leave BASIC and release store to the system

Example 200 IF playagainS <> 'Y* THEN BYE_:REMark return to system
menu

Description A TONTO BASIC procedure that terminates the current instance
of the BASIC interpreter

Format BYE

Associated
keyword

STOP

D2-9

CALL

Type System interface

Purpose To commence execution of an assembler program from BASIC

Examples CALL qy_prog,32, 1,2,3,4

120 Prog=SEGMENT(4) :REMark 2K required
130 LBYTES MDVl_ntyprog,Prog,0 :REMark Read in program
140 CALL Prog,2,parml,par«2 :REMark Execute it
150 ccX=PEEK_W(Prog,0) :REMark conpletion code

Descri pt ion A procedure providing an interface to the low level system
facilities. The third and subsequent parameters are placed in
the TONTO registers DI,....,D7,A0........ A5 in that order. A
maximum of 13 additional parameters may be specified

Format CALL <segment identifier, <offset>^<register value>^

Associated
keywords

LBYTES, PEEK, POKE, SBYTES, SEGMENT

Note Such an execution is monitored by BASIC. Do not attempt to use
this facility unless you are a very experienced programmer

D2-10

CHRS

Type Character translation function

Purpose To translate an internal character code into the display
symbol for that character

Examples PRINT CHRS(66) Prints B

130 PRINT CHRS(194) :REMark print 1/2 as 1 char

70 OPEN #4,prn
80 PRINT #4,CHRS(15) :REMark Set condensed print

Description A function returning the internal character representation
of its parameters

Format CHRS ('numeric expression) range 0 to 255

Associ ated
keyword

CODE

Note Not all values yield a displayable character

02-11

CLEAR

Type System procedure

Purpose To clear all variable store and release any store regained

Example CLEAR

Description A procedure which may reduce the store requirement of the
BASIC program and sets all variables to an uninitialised state

Format CLEAR

Associ ated
key wo rd

RESTORE

02-12

CLOSE

Type Device control procedure

Purpose To close a channel and destroy the relationship between that
channel and the associated device. If the channel is
associated with a screen window then that window is
deacti vated.

Examples CLOSE #9 Close channel identified by channel number 9

900 CLOSE #printer_channel :REMark close printer_channel

Description A procedure which causes a device or file to be closed and any
end processing to be performed. It also releases associated
store to the system

Format CLOSE #<chanriel number>

Associ ated
keywords

OPEN, OPEN_IN, OPEN_NEW

Note Channels rfO and #2 are protected and cannot be cleared except
by terminating BASIC

02-13

CLS

Type Screen handling procedure

Purpose To clear all or part of a screen window

Examples 10 AT 5,23:CLS4 :REMark clear previous input

10 CLS #4 :REMark Clear other window

Description A channel based procedure which can clear all or part of a
screen window to its current paper colour

Format CLS \.^<channel number >,]\-<section> J

where: section = 0 whole window (default if no parameter)
section = 1 top excluding the cursor line
section = 2 bottom excluding the cursor line
section = 3 whole of the cursor line
section = 4 right end of cursor line including the

cursor position

Associated
keywords

PAPER, WINDOW

Note Clearing the whole window sets the cursor position for that
window to line 0, column 0. Clearing part of a window has no
effect on the cursor position, except that any pending new
lines is output first

D2-14

CODE

Type Character translation function

Purpose To generate the internal code for the first character of a
stri ng

Examples PRINT CODE (’BASIC) Displays 66

70 FOR 1=1 TO 80
80 rec$(i)=CHR$(CODE(rec$(i))*3/2+4 :REMark Encrypt
90 END FOR i

Description A function returning the internal value of the first character
of its parameter. It returns zero if the parameter is an empty
stri ng

Format CODE (<str,zng value>)

Associated
keyword

CHRS

D2-15

CONTINUE

Type Program control command

Purpose To allow a program to be resumed at the next statement that it
would have executed after halting due to a STOP command, an
error or the BREAK key sequence

Examples CONTINUE

Description A procedure which allows an interrupted program to be resumed
at the next logical statement provided that:

no program lines have been added, changed or deleted

no new variables have been created

Format CONTINUE

Associated
keywords

RETRY, STOP

D2-16

COPY
COPY_N

Type Data archival procedure

Purpose To copy a data file to a device or another file. COPY_N
removes the microdrive header from the file.

Examples COPY MOVImyprog TO MDY2_myprog

COPY_N MDV2_reportl TO PRN

360 COPY mdvl_datafilel TO mdv2_databakl

Descri pt ion A command which allows data files or BASIC program files to be
transferred between devices

Format COPY[_N] <file specification* TO <file specification* |
<device specification*

Associated
keyv/ords

SAVE, PUBLISH, PRINT

02-17

cos

Type Mathematical function

Purpose To calculate the cosine of an angle

Example PRINT COS (RAD(45))

Description A function returning the cosine of its parameter. The
parameter is in radian measure

Format COS angle in radiane>)

Associated
keywords

ACOS, ACOT, ASIN, ATAN, COT, DEG, RAD, SIN, TAN

COT

Type Mathematical function

Purpose To calculate the cotangent of an angle

Example PRINT COT (PI/8)

Description A function returning the cotangent of its parameter. The
parameter is in radian measure

Format COT [tangle in radians>)

Associated
keywords

ACOS, ACOT, ASIN, ATAN, COS, DEG, RAD, SIN, TAN

02-18

CSIZE

Type Screen handling procedure

Purpose To change the character size for all subsequent output
characters

Examples 280 CSIZE #5,3,1 :REMark Title in large characters

360 CSIZE 0,0 :REMark Revert to normal size

Descri pt ion A channel based procedure which alters the size attributes for
subsequent output to the associated window. Characters may be
6 or 12 pixels wide, and 10 or 20 pixels high. A line across
the screen holds 40 characters if they are 12 pixels wide, or
80 characters if they are 6 pixels wide. CSIZE has no effect
if the channel is not a screen window

Format CSIZE L#<channel number>, J <vidth code> ,<height code>

where: tiridth code> is 0 or 1 for single width characters
2 or 3 for double width characters

: <height code> is 0 for single height characters
1 for double height characters

Associated
keywords

AT, PRINT, UNDER, WINDOW

Note The command fails out of range if a character of the new
size will not fit within the window at the cursor position

02-19

DATA

Type Intrinsic BASIC keyword

Purpose To enable data values for READ statements to be embedded in
a program

Example 200 FOR a=l TO 3
210 READ areata):READ town$(a)
220 NEXT a
900 DATA 7, "Li verpool",11."Birmingham"
910 DATA 32,"Norwich"

Description A keyword which must precede all lists of data in the program

Format DATA <expression> , <expreesion>\>

Associated
keywords

READ, RESTORE

Note An implicit RESTORE is not performed before RUNning a
program

D2-20

DATE

Type Clock function

Purpose To return the value of the TONTO clock as a floating point
number

Examples 10 start=DATE
12 requested_characters = ‘a*
20 REPEAT reactions
30 AT 0,0 : PRINT DATE-Start!‘seconds’
40 IF inkeyS=requested_character$: EXIT reactions
50 END REPEAT reactions

Descri pt ion A function returning the value of the clock measured in
seconds from the midnight preceding January 1st, 1970

Format DATE

Associated
keywords

DATES, DAYS

D2-21

DATES

Type

Purpose

Examples

Description

Format

Associated
keywords

Clock function

To return a textual representation of a time and date

PRINT DATES Prints the current TONTO date and time

PRINT DATES(O) Prints 1970 JAN 01 00:00:00

80 now$=DATE$
90 PRINT now$(13 TO 20)’“Finished" :REMark time the message

190 b$=DATE$
200 PRINT #4,"Date:“!DAY$!b$(10 TO ll)!b$(6 TO 8)!b$(l TO 4)

:REMark date the report showing the day

A function returning a date and time string representation of
its parameter. If no parameter is supplied, the current TONTO
date and time are given. The format of the string is:

YYYY MMM DD HH:MM:SS

where:

YYYY is the year 1970, 1984 etc
MMM is the month JAN, FEB,... DEC
DD is the day 01 to 31
HH is the hour 00 to 23
MM is the minute 00 to 59
SS is the seconds 00 to 59

DATES _(<clock value>)]

DATE, DAYS

D2-22

DAYS

Type Clock function

Purpose To generate a textual representation of a day of the week from
a value measured in seconds from the midnight preceding Jan
1st, 1970

Examples 140 IF DAYS = ‘FRI* THEN PRINT ,Yippeeee‘

280 PRINT "Tomorrow will be"!DAYS(DATE + 24*60*60)

Descri ption A function returning a textual representation of its
parameter, where the parameter is a valid clock value, and the
result is the day of the week. If no parameter is given, DAYS
returns the current day of the week

Format DAYS [<clock value>]

Associated
keywords

DATE, DATES

D2-23

DEFine

Type BASIC command structure

Purpose To inform BASIC that a PROCedure or FuNction is about to
be defined, or has just been defined

Description A BASIC keyword which must precede declaration of a user
function or procedure, or which must succeed END at the end
of such a declaration

Associ ated
keywords

PROCedure, FuNction, END

Note This keyword never appears on its own

D2-24

DEFine FuNction

Type BASIC command structure

Purpose To define a user function

Examples 100 DEFine FuNction mean (a,b)
110 RETURN a + b/2
120 END DEFine mean

480 DEFine FuNction right$(string$,lnth)
490 RETurn string$(LEN(string$)-lnth+l T0>
500 END DEFine rights

1000 DEFine FuNction getyesnoS
1010 LOCal charS
1020 REPeat getchar
1030 INPUT "Enter Y or N"!charS
1040 IF charS(l) INSTR "NnYy" THEN EXIT getchar
1050 END REPeat getchar
1060 RETurn (CHR$(CODE(char$(1)) && 223)) :REMark uppercase
1070 END DEFine getyesnoS

Description A BASIC construct which causes BASIC to define a user function

DEFine FuNction identifies the function and its parameter,
if any. The sequence of statements between the DEFine
function and the END DEFine constitute the function. The
function definition may also include a list of formal
parameters which supply data for the function. Both the formal
and actual parameters must be enclosed in brackets. If the
function requires no parameters, you do not specify an empty
set of brackets.

Formal parameters take their type and
corresponding actual parameters.

character!'sties from the

An answer is returned from a function by appending an
expression to a RETurn statement. The type of the data is
indicated by the character appended to the function name. A S
indicates string data, a % indicates integer data, no
character indicates floating point data.

A function is activated by including its name at a suitable
point in a BASIC expression.

D2-25

DEFine FuNction

Format

Associated
keywords

Note

Function calls in Basic can be recursive, that is a function
may call itself directly or indirectly via a sequence of other
cal Is.

DEFine FuNction <f unction name> L (<parcuneter >
<parameter>)]

DEFine PROCedure, END DEFine, LOCal, RETurn

Refer to pages B15-5 and C2-29 for more information.

D2-26

DEFine PROCedure

Type BASIC command structure

Purpose To define a user procedure

Example

Description

300 check inval,l,10
320 DEFine PROCedure check (value, min, max)
330 IF value < min OR value > max THEN
340 PRINT ‘range check error*
350 STOP
360 END IF
370 END DEFine PROCedure check

A BASIC construct which causes BASIC to define a user
procedure. DEFine PROCedure identifies the procedure and its
parameters, if any. The sequence of statements between the
DEFine PROCedure statement and the END DEFine statement
constitutes the procedure. The procedure definition may also
include a list of formal parameters which supply data for the
procedure. The formal parameters must be enclosed in brackets
for the procedure definition, but the brackets are not
necessary when the procedure is called. If the procedure
requires no parameters, you do not include an empty set of
brackets in the procedure definition.

Formal parameters take their type and characteristics from the
corresponding actual parameters.

Variables may be defined to be LOCAL to a procedure, local
variables have no effect on similarly named variables outside
the procedure. If required, local arrays should be dimensioned
within the LOCAL statement.

You call a procedure by entering its name as the first item in
a BASIC statement together with a list of actual parameters.
Procedure calls in BASIC can be recursive, that is a procedure
may call itself directly or indirectly via a sequence of other
calls. i

It is possible to regard a procedure definition as a command
definition in BASIC; many of the system commands are
themselves defined as procedures.

D2-27

DEFine PROCedure

Format

Associated
keywords

Notes

DEFine PROCedure ^procedure name> [(<parameter> ,
<parameter>)]

DEFine FuNction, END DEFine, LOCal, RETurn

1 Refer to section B7, B15-1 to B15-5 and C2-29 for further
information on user defined procedures

2 The function or procedure name is not checked against the
name of the function or procedure

D2-28

DEG

Type Mathematical function

Purpose To calculate an angle expressed in degrees from an angle
expressed in radians

Example PRINT DEG (PI/2)

Description A function returning the value of its parameter multiplied by
180, and divided by tc

Format DEG (<radian angle>)

Associated
keywords

ACOS, ACOT, ASIN, ATAN, COS, COT, RAD, SIN, TAN

D2-29

DELETE

Type Microdrive command

Purpose To delete a file

Examples 900 DELETE MDVl_working_file

DELETE MDVl_testprogram

Description A command allowing the deletion of a file from a microdrive
cartridge

Format DELETE <file specification

Associated
keywords

SAVE, PUBLISH, OPENNEW

Note If the file does not exist, the error not found is reported

02-30

DEL-PSE

Type Permanent store procedure

Purpose To delete an entry in the permanent store

Examples DEL_PSE 400

40 DEL_PSE my_bank_balance

Description A procedure whch releases the specified entry in the permanent
store

Format DEL PSE < numeric expression

Associated
keywords

PSES, SET_PSE

Notes 1 Do not delete entries 0 to 255. These are reserved for
system use

2 It is not an error to delete an entry which does not exist

D2-31

DIM

Type BASIC keyword

Purpose To define an array of a specific size to BASIC, so that BASIC
can allocate the required store

Examples 10 DIM car_type$ (100,20), car_regs$ (100,9)

30 DIM revenue (12)

Description A statement which dimensions arrays. Arrays must be declared
before use

Format DIM ^variable > (<maximum index>^_,<maximum index>\

Associ ated
keywords

DIMN, LEN

Notes 1 The DIM statement initialises all elements of an array

Numeric arrays: All elements set to 0
String arrays : All elements set to ""

2 The number of elements in any dimension is one more than
the specified maximum index, since there is always an
element with an index of 0

3 For a string array the last index is rounded up to a
multiple of two and represents the maximum length of each
string element. Element zero of the last dimension is, in
fact, the current length of the string represented by that
dimension and should not be altered explicitly

D2-32

DIMN

Type BASIC function

Purpose To return the maximum index of an array

Examples 230 FOR I = 1 TO DIMN(A$) : PRINT AS(I)

120 IF DIMN (x,3)<8 THEN STOP

100 DIM A (2,4,3)
110 PRINT DIM (A) :REMark prints 2
120 PRINT DIM (A,l) :REMark prints 2
130 PRINT DIM (A,2) :REMark prints 4
140 PRINT DIM (A,3) :REMark prints 3
150 PRINT DIM (A,4) :REMark prints 0

Description A function giving the maximum index of the dimension which is
its parameter. The first parameter is the name of an array.
The second (and subsequent) parameter is the number of the
dimension. If the second parameter is omitted, a default of 1
is used, giving the size of the first dimension. If the second
argument exceeds the number of dimensions, DIMN returns 0

Format DI MN (<array> [^dimension number>J)

Associated
keywords

DIM, LEN

D2-33

DIV

Type BASIC operator

Purpose To indicate that an integer divide is required

Examples 30 PRINT ‘We each get*lappies DIV people! ‘apples’

Description A binary operator performing integer division between its
operands. The operands are converted to integer before
division takes place, a DIV b produces the largest integer
not exceeding a/b

Format <numeric expression DIV <nimeric expression

Associated
keywords

MOD

DLINE

Type BASIC command

Purpose To delete one or more lines from a BASIC program

Examples DLINE 100 to 170

DLINE 10, 40, 90 TO 120, 180 TO 200

Description A command which removes lines from a BASIC program

Format DLINE <line range> | , <line range

D2-34

EDIT

Type BASIC command

Purpose To request BASIC to enter editing mode. In this mode it is
possible to make changes to a program one line at a time

Examples EDIT

EDIT 200,10

Descri ption A command which causes BASIC to present previously entered
lines for possible amendment

The EDIT command enters the BASIC line editor.

The EDIT command is closely related to the AUTO command;
the only difference is in their defaults. EDIT defaults to a
line increment of zero and thus edits a single line unless a
second parameter is specified to define a line increment.

If the specified line already exists, the line is displayed
and you can start editing. If the line does not exist, the
line number is displayed and you can enter the line.

You can manipulate the cursor within the edit line using the
standard TONTO keystrokes. When the line is correct, pressings
enters the line into the program.

If an increment is specified, the next line in the sequence is
edited, otherwise EDIT terminates.

If no line number is given, a default of 100 is used.

Format EDIT _<line number) JI ,<line increment) J

Associ a ted
keywords

AUTO

D2-35

EDIT

Notes 1 Refer to pages B2-9 and C2-16 for an explanation of the
editing keys

2 Changing the line number (and then sending the line)
causes the edited line to be inserted at the point
specified in the program. The original line is left
unchanged. This allows copying of lines, but be careful.
If the line number of the edited line corresponds to an
existing line, that line is replaced

D2-36

ELSE

Type BASIC command structure

Purpose To separate the statements of an IF clause that are executed
when the condition of the IF clause is true, from those that
are executed when the condition is false

Examples 150 ELSE

10 IF Mindy THEN sail : ELSE glide

Description Part of the IF...THEN...ELSE structure

Format [ELSE <statement>^ J

Associated
keywords

END IF, IF, THEN

END

Type BASIC command structure

Purpose To inform BASIC that the end of a structure has been reached.
END is always followed by the keyword which introduced the
structure

Examples 380 END DEFine

870 END FOR I

Description A control marker indicating the end of a structure

Associated
keywords

DEFine, FOR, IF, REPeat, SELect

Note This keyword never appears on its own

D2-37

END DEFine

Type BASIC command structure

Purpose To indicate that the end of a user defined function or
procedure has been reached

Examples END DEFine check

END DEFine min

END DEFine

Description A command indicating that the end of a routine has been found.
If executed, this statement has the same effect as RETurn

Format END DEFine _<function name or procedure nan<.'>]

Associated
keywords

DEFine FuNction, DEFine PROCedure, RETurn

Notes 1 Refer to pages D2-25 to D2-27 and C2-29 for detailed
explanation of user defined functions and procedures and
see section B7 and pages B15-1 to B15-5 for details of
how to use procedures and functions

2 The function or procedure name is not checked against the
name of the function or procedure

D2-38

END FOR

Type BASIC command structure

Purpose To indicate that the end of a FOR loop has been found

Example END FOR count

Description A statement marking the end of a FOR loop. If executed, this
statement will pass control to the statement after the
corresponding FOR statement or, if the loop count has
expired, will pass control to the next statement in sequence

Format END FOR <loop identified

Associated
keywords

EXIT, FOR, NEXT

ENO IF

Type BASIC command structure

Purpose To mark the end of an IF construct

Example 230 END IF

Description A control statement delimiting the final clause of a
conditional statement

Usage END IF

Associ ated
keywords

ELSE, IF, THEN

D2-39

END REPeat

Type BASIC command structure

Purpose To indicate that the end of a REPeat has been found

Example 120 END REPeat search

Description A statement marking the end of a
this statement passes control to
corresponding REPeat statement.

REPeat loop. When executed,
the statement after the

Format END REPeat <loop identified

Associated
keywords

EXIT, NEXT, REPeat

END SELect

Type BASIC command structure

Purpose To indicate the end of a SELect....END SELect clause

Example 220 END SELect

Description A statement marking the end of a SELect clause

Format END SELect

Associated
keywords

REMAINDER, SELect

D2-40

EOF

Type Channel status function

Purpose To return a logical value indicating whether there is further
data which may be input from a channel or READ from DATA

Examples 540 IF EOF(ffile) THEN EXIT display

2000 IF EOF(#4) THEN CLOSE #4

Descri ption A function used to determine whether the end of file has yet
been reached on the specified channel

Usage EOF (#<channeZ number>)

Associated
keywords

DATA, READ, RESTORE, INPUT, INKEYS

Notes 1 Certain device types always return the same value:

SCR and PRN - EOF is always true

2 EOF with no parameter returns true if all DATA
statements have been read

02-41

EXIT

Type BASIC control statement

Purpose To allow exit from a FOR or REPeat loop

Example 40 EXIT loop

Description A statement which transfers control to the statement after the
related END FOR or END REPeat statement

Format EXIT <loop identified

Associated
keywords

END FOR, END REPeat, FOR, NEXT, REPeat

EXP

Type Mathematical function

Purpose To calculate the value of e to a given power

Examples PRINT EXP(2.4)

100 LET y = 100*SIN(x) * EXP(x/30)

Description A function returning e to the power of the parameter

Format EXP (‘-numeric expression^

Associated
keywords

LN

D2-42

FILLS

Type String function

Purpose To generate a string of specified length filled with one
character, or a pair of characters

Examples PRINT FILLS ('*•, 80)

30 var$ = FILLS C A‘» 100)

Description A function returning a string result of a given repetition of
characters

Format FILLS (<one or two character string> , '-repeat count>)

D2-43

FOR

Type BASIC command structure

Purpose To allow a group of BASIC statements to be repeated a
controlled number of times

Examples FOR count = 1 to 40 STEP 2, 70 to 90 : PRINT count

10 FOR q = 1 to 10
20 IF NOT enpty(q) THEN service q
30 END FOR q

Description A statement initialising a FOR...END FOR loop. The FOR
statement allows a group of BASIC statements to be repeated a
controlled number of times. You can use the FOR statement in
both a long and a short form:

Short

The FOR statement is followed on the same logical line by a
sequence of BASIC statements. The sequence of statements is
then repeatedly executed under the control of the FOR
statement. When the FOR statement is exhausted, processing
continues on the next line. The FOR statement does not
require its terminating NEXT or END FOR. Single line FOR
loops must not be nested.

Example

350 FOR i=l TO 300:READ element(i)

Long

The FOR statement is the last statement on the line.
Subsequent lines contain a series of BASIC statements
terminated by an END FOR statement. The statements enclosed
between the FOR statement and the END FOR are processed
under the control of the FOR statement

02-44

FOR

Examples

10 INPUT “data please” ! x
20 LET factorial = 1
30 FOR value = x TO 1 STEP -1
40 LET factorial = factorial * value
50 PRINT x !!!! factorial
60 IF factorial>1E2O THEN
70 PRINT “Very large number"
80 EXIT factorial
90 END IF

100 END FOR value

110 FOR i=0 TO 149
120 AT 3+i DIV 10,8*(i MOD 10)
130 PRINT item(i)
140 END FOR i

A string or integer
FOR loop.

WARNING
variable must not be used to control a

Format FOR <loop variable> = <required values>

Associated
keywords

END FOR, EXIT, NEXT

Notes Refer to pages B4-1
program looping

to B4-4 for a detailed explanation of

D2-45

GOSUB

Type Program control command

Purpose To transfer processing to a specified line number but allow a
RETurn to be made to the next statement after the GOSUB

Examples 20 GOSUB 300

140 GOSUB 200+100*selection

Description A statement used to call a section of program as a subroutine

Format GOSUB <line number>

Associated
keywords

GOTO, RETurn, PROCedure

Note This keyword is included for compatibility. Procedures should
be used in preference

02-46

GOTO

Type Program control command

Purpose To enable lines to be executed in an order other than that
imposed by their line numbering

Examples GOTO 10

100 GOTO 200+100* selection

Descri ption A statement used to transfer control to a specified or
calculated line number unconditionally

Format GOTO <line raimbe^>

Associated
keyword

GOSUB

Notes 1 When executed as a command, GOTO <line number> has the
same effect as RUN cline number>

2 If the specified line number does not exist, control is
passed to the next highest line number. This applies
equally to negative line numbers. Thus GOTO-1 causes
execution to continue from the start of the program

02-47

IF

Type BASIC command structure

Purpose To evaluate a conditional expression and use the result to
control the subsequent actions of BASIC

Examples 600 IF value < 0 THEN PRINT ‘Positive numbers only!!*

220 IF actions = *D* THEN
230 DELETE filenames
240 ELSE
250 IF actions = ‘V* THEN
260 COPY filenames TO SCR
270 ELSE
280 PRINT ‘Unrecognised action value - try again*
290 END IF
300 tidy up files
310 END IF

Description A statement forming part of the IF...THEN...ELSE...END IF
structure. This statement is the only part of that structure
which is always required

You can use the IF statement in three forms:

Short

The THEN keyword is followed on the same logical line by a
sequence of BASIC statements. If ELSE is included in the
short form of IF, the ELSE must be included on the same
logical line (see example 4). These statements are executed if
the expression contained in the IF statement is true
(evaluates to be non zero). THEN may be replaced by a : see
example 3.

02-48

IF

Exampl es

1 IF a = 32 THEN PRINT "Limit reached":a=O

2 IF test—data > maximum THEN LET maximum = test_data

3 IF a THEN PRINT "a is not zero“:a= -1

4 IF x < min THEN min = x: ELSE x = x + 1

Long 1

The THEN keyword is the last item on the logical line. A
sequence of BASIC statements is written following the IF
statement. The sequence is terminated by the END IF
statement. The sequence of BASIC statements is executed if the
expression contained in the IF statement is true (evaluates
to non zero). THEN may be omitted.

Example

10 LET limit = 10: error_count = 0
20 FOR try = 1 TO 20
30 INPUT "type in a number" 1 number
40 IF number > limit THEN
50 LET error count = error_count + 1
60 PRINT "Out of range; error count is" ! error_count
70 IF error_count > 5 THEN
80 PRINT "Too many errors"
90 EXIT try

100 END IF
110 END IF
120 END FOR try

D2-49

Long 2

The THEN keyword is the last entry on the logical line. A
sequence of BASIC statements follows on subsequent lines,
terminated by the ELSE keyword. IF the expression
contained in the IF statement is true (evaluates to be non
zero), this first sequence of BASIC statements is processed.
After the ELSE keyword a second sequence of BASIC statements
is entered, terminated by the END IF keyword. If the
expression evaluated by the IF statement is zero, this
second sequence of BASIC statements is processed. THEN may
be omitted.

Example

10 LET limit = 10
20 INPUT "Type in a number " ! number
30 IF number > limit THEN
40 PRINT "Range error"
50 ELSE
60 PRINT "Inside limit-
70 END IF

100 IF a/2=INT(a/2) THEN
110 IF b/2=INT(b/2)
120 PRINT "Both even"
130 ELSE
135 PRINT "a even, b odd"
140 END IF
150 ELSE
160 IF b/2=INT(b/2) THEN
170 PRINT "a odd, b even-
180 ELSE PRINT "Both odd-
190 END IF
200 END IF

COMMENT
In all three forms of the IF statement the THEN is
optional. In the short form it may be replaced by a colon to
distinguish the end of the IF and the start of the next
statement. In the two long forms it can be removed completely.

IF 'condition* THEN '■statement* 'statement> \Format

Associated
keywords

ELSE, END IF, THEN

D2-50

INCLUDE

Type System interface

Purpose To add additional keywords to BASIC and/or to introduce new
devices

Example INCLUDE 3, "TLINK_DRIVER“

Descri ption The first parameter is a search key with the following
signi ficance:

0 Search loaded programs only
1 Search loaded programs and microdrive 1
2 Search loaded programs and microdrive 2
3 Search loaded programs and both microdrives

where program is used in the wider TONTO sense rather than
as a BASIC program

The second parameter is the 12 character name of a TONTO
program. This program contains the code to support the new
facilities together with information to allow the BASIC
interpreter to add the new keywords and/or devices to its
internal tables. BASIC searches for the program as specified
by the search key and, if necessary, loads the program into
store. The contents of such a program are beyond the scope of
this document

Format INCLUDE <search key> t<TONTO program name>

D2-51

INK

Screen handling procedureType

Purpose To change the ink colour for all subsequent
to the specified channel

characters output

Examples 10 PAPER 7 : INK 0

INK #0,4

Description A channel based procedure which changes the
attributes of the associated window

foreground colour

Format INK l^<channel number>,]<ink colour value>

Associ ated
keyword

PAPER

Note refer to pages B12-3 to B12-4 and C2-15 for
the colours generated by various ink values

a description cf

D2-52

INKEYS

Type Data retrieval function

Purpose To inspect the selected channel and obtain any available
character

Examples REPeat copier : PRINT INKEY$(#7) : END REPeat copier

90 IF INKEY$(5) = ““ THEN PRINT “Too slow"

260 PRINT “Hit any key when ready,<ESC> to ahort“
270 IF CODE(INKEY$(-1)) = 27 THEN EXIT overwrite

Description A function which waits up to a specified time for a key to be
pressed. The function returns either a null string if no key
is pressed, or the value of the key pressed. The parameter is
the maximum wait time specified in 20ms periods; if -1 the
wait is indefinite

Format INKEYS (\. if <channel number^,\<vait period^

INKEYS

Associated
keywords

INPUT, PAUSE

Notes 1 Characters obtained via this function are not echoed to
the screen

2 INKEYS may be applied to a channel associated with a
microdrive file. In this case the wait period is ignored
and either the next character in the file is returned or
end of file is reported as appropriate

3. For a console channel, INKEYS returns the next available
character from the buffer associated with that channel.
If the buffer is empty, the keyboard is inspected and if
any key is depressed, its value is returned. A single key
depression lasts a long time in computer terms and it is
possible to read the same key depression twice if
consecutive calls of INKEYS are very close together

D2-53

INPUT

Type Data retrieval procedure

Purpose To obtain data values from a specified channel instead of from
embedded data statements

Examples 10 INPUT a, b, c$

200 INPUT “A" ! a ! "B" ! b! "C" ! c

300 prompts? = "what is your name?" : INPUT(prompts) ! names

Description A statement to input values from a specified channel. INPUT
allows you to enter data into a BASIC program. For a console
channel, a cursor appears to indicate that input is expected
and you must terminate each item by pressing the RETURN key.
For a microdrive channel, each item is terminated by a line
feed character.

You will notice that the syntax of <10 list> is a list of
expressions separated by commas, semicolons, etc. as the the
PRINT statement. Where one of these expressions is a
variable, a value for the variable is input from the specified
or default channel. Where the expression is not a simple
variable (e.g. x+2 as opposed to x), the value of the
expression is output to the channel. Note that any identifier
can be turned into an expression by enclosing it in quotes.

Format INPUT [#<channel number*>J <10 list*

Associated
keywords

INKEYS, PRINT, READ

D2-54

INPUT

Notes 1 When INPUT is used with ? CONsole channel the maximum
number of characters that can be input is limited by the
window size and is (height*width) -1 where height and
width are in numbers of characters. If the window is only
one character in size, the only valid key combinations in
response to the INPUT are those that terminate input

2 When inputting a number the system will read characters
until it finds a character that is not part of the
number. For example, the following shows a short program
and some examples of its output in response to various
input strings

10 CLS
20 FOR 1=1 TO 4 : INPUT D%!:PRINT, 0%
30 FOR 1=1 TO 4 : INPUT R!:PRINT, R

Input Output Comment

2
2.7
2e01
2e
2
2.7
2e01
2e

2 integer input stops at first
2 non-digit
2
2 .
2 floating-point input stops when a
2.7 I syntactically correct number has
2o | been found
error)

D2-55

INSTR

Type String operator

Purpose To calculate the starting index of the occurrence of one
string within another

Examples PRINT substrS INSTR search_string$

50 IF NOT (guess$ INSTR word$) THEN hangplayer

300 IF answer$(l) INSTR "NnYy": EXIT yesno

Description A string operator which searches the right hand operand for
the first occurrence of the left hand operand. If found, the
value returned is the starting index of the matched string
slice in the right hand operand; if not found, 0 is returned.
Both operands are converted to strings before searching.

Zero can be interpreted as false, that is the substring is not
contained in the given string. A non zero value, the
substring's position, can be interpreted as true, that is the
substring is contained in the specified string

Format <string expression INSTR <string expression

D2-56

I NT

Type Mathematical function

Purpose To return the value of any number rounded down to the next
integer

Examples PRINT INT(-3.2)

40 LET rounded = INT (value +0.5)

Description A function returning its real parameter converted to the next
lower integer

Format INT (<numeric expression*)

LBYTES

Type Memory access procedure

Purpose To allow a memory image data file to be loaded into memory
at the specified start address

Examples LBYTES MDV1_SCREEN, 131072

65 seg = SEGMENT(IO) : LBYTES programs, seg, 0

Description A procedure which allows direct cartridge to memory transfer

Format LBYTES <file specification*, <memory address* 1
<segment identifier*, <offset>

Associated
keywords

CALL, PEEK, POKE, SBYTES, SEGMENT

D2-57

LEN

Type Dimensioning function

Purpose To calculate the number of characters in a string

Examples PRINT LEN (strings)

120 IF LEN(wordlS) <> LEN(word2$) : PRINT ‘not the same1

Description A function returning the length of the string supplied as its
parameter

Format LEN (<string expression>)

LET

Type Intrinsic BASIC command

Purpose To allow values of variables to be initialised or updated

Examples dogs = dogs + 2

LET Erx = ABS(Angle - ATAN(SIN(Angle)/COS(Angle)))

Description LET is an optional introduction to an assignment statement

Format LET <var£abie> = <expres8ion'>

D2-58

LIST

Type BASIC command

Purpose To list selected parts of a program to a channel, which is
defaulted to the listing window

Examples LIST 50 TO 180

LIST 10, 20, 90 TO 130

Description A command that lists the current program

Format LIST _#<channel numbers <selected lines>^

LN

Type Mathmatical function

Purpose To calculate the natural logarithm of a number

Example PRINT LN(20)

Description A function returning the natural logarithm of its parameter.
Inverse logarithms can be calculated using EXP

Format LN ('numeric expression^

Associated
keywords

EXP, L0G10

D2-59

LOAD

Type Program storage command

Purpose To retrieve a program from a device

Example LOAD MDY2_user_program

Decri ption A command that deletes any current program and retrieves the
requested program from the specified device.

The effect of LOAD is to make BASIC read commands from the
specified file. Normally, such commands are numbered BASIC
program lines, resulting in a new program being stored for
execution. Any input line which is not numbered is executed
immediately.

A numbered line which is syntactically incorrect is
nevertheless added to the stored program but is altered so
that executing the line will cause an error. For example, if
the file being loaded contains the line

200 PRINT “HELLO"; PRINT name$: REM missing colon

You will find on listing the program that it is stored as

200 MISTake PRINT "HELLO"; PRINT name$: REM missing colon

and an attempt to execute this line gives the message

At line 200 bad line

Format LOAD <file specification

Associated LRUN, »€RGE, MRUN, NEW, PUBLISH, SAVE
keywords

D2-60

LOCal

Type Variable control

Purpose To allow variables and arrays to be local to the procedure or
function in which they occur; their use in this function or
procedure in no way affects the value of the variable with the
same name outside it

Example 560 LOCAL val,num%,item$

800 LOCal c(3,30) :REMark DIMension & LOCalise c

Description A statement which can only be used inside a procedure or
function definition. LOCal saves the values of the external
variables named and restores these values when the function or
procedure is completed. Arrays can be defined to be local by
implicitly dimensioning them within the LOCal statement as
in the example above.

The LOCal statement must precede the first executable
statement in the function or procedure in which it is used.

Format LOCal <variable> , <variable>\)

Associated
keywords

DEFine, DEFine FuNction, DEFine PROCedure

D2-61

L0G10

Type Mathematical function

Purpose To calculate the common logarithm of a number to base 10

Example PRINT LOG1O(27)

Description A function returning the common logarithm to base 10 of its
parameter. Inverse logarithms (anti-logarithms) can be
calculated using Y = 10 A X

Format L0G10 {<numeric expression)

Associated
keywords

EXP, LN

LRUN

TYpe Program storage command

Purpose To load and run a BASIC program from a device

Example LRUN MDY2_game

Description This command is exactly equivalent to using LOAD followed by
RUN

Format LRUN <file specification

Associated
keywords

LOAD, RUN

D2-62

MERGE

Type Program storage command

Purpose To merge two or more whole or part programs together. It is
very useful in building up a library of commonly used
procedures and functions

Example MERGE MDVl_procedures

Descri ption A command which causes a new program to be loaded from the
specified device without erasing any previous program from
store. Commands and program lines are effectively taken from
the specified file as if they had been typed in at the
keyboard, hence any clashes between line numbers will result
in replacement of the original line. As with other variants of
the LOAD command, any input line which has incorrect syntax
has the word MISTake inserted between the line number and
the body of the line. Upon execution, such a line generates an
error

Format ME RGE <fi I e specification'

MRUNAssoci ated
keywords

LOAD, LRUN,

D2-63

MISTake

Type Special keyword

Purpose To flag bad lines which have been loaded from a device

Example 10 MISTake a-b+c

Descri ption A keyword which causes an error on execution

Format Only used by BASIC

Associ ated
keywords

LOAD, LRUN, MERGE, MRUN

MOD

Type BASIC operator

Purpose To indicate that a modulus operation is required

Examples PRINT 7 MOD -3 Prints -2

PRINT n MOD n Prints 0

PRINT -1 MOD 6 Prints 5

Description A binary operator giving the modulus of its first operand in
the base of the second. Both operands are converted to integer
before the operation takes place.

Format (-numeric expression* MOD (numeric expression*

Associated
keyword

DIV

D2-64

MRUN

Type Program storage command

Purpose To merge and run a BASIC program or programs

Example MRUN MDVl_new_data

Descri ption This command is exactly equivalent to using MERGE followed
by a RUN command

Format MRUN <file specification

Associated
keywords

LOAD, LRUN, MERGE

NEW

Type Direct command

Purpose To clear out any program and variables which are held in the
store to make way for a new program

Example NEW

Description A command which effectively deletes all traces of any previous
program which was in BASIC's store

Format NEW

Associated
keyword

CLEAR

D2-65

NEXT

Type Program control command

Purpose To cause program execution to continue at the statement after
its related FOR or REPeat statement, if the controlling
variable is not exhausted

Examples 500 FOR 1=1 TO 1000
505 IF EOF (#7) THEN EXIT i
510 INPUT #7,rec$:REMark read stock rec
520 partnum(i)=rec$(l TO 8)
530 stk qty(i)=rec$(10 TO 16)
540 NEXT T
550 PRINT "Too many records"
560 STOP
570 END FOR i

Description A statement which delimits FOR loops in other BASICS. On the
TONTO it has the same effect but may be placed anywhere within
the body of the loop.

In a FOR loop for example, in conjunction with the EXIT
statement, statements between the NEXT and END FOR
statement will only be executed if the controlling variable
expires. Premature loop termination as a result of obeying the
EXIT statement, however, will inhibit the execution of this
loop epilogue. This construct may be compared with DO UNTIL
construct of other languages

Format NEXT <loop identified

Associated
keywords

END FOR, END REPeat, FOR, REPeat

D2-66

NOT

Type BASIC operator

Purpose To complement a logical value

Example IF NOT sunny THEN stay_indoors

Description A unary logical operator which returns:

0 if the operand was non-zero
1 if the operand was zero

Format NOT 'boolean expression}

Associated
keywords

AND, OR, XOR

D2-67

ON...GOSUB
ON...GOTO

Type Program control command

Purpose To allow multiway program control transfers. The value of the
expression indexes the line number that is next executed. The
value 1 selects the first line in the list, the value 2 the
second line and so on

Examples 110 ON X GOSUB 300, 400, 500

380 ON Y GOTO 400, 500, 600

Description A statement providing multiple options in changing the order
of execution of a program

Format OH (-numeric expression^ GOSUB <line number list>

ON (.numeric expression> GOTO (-line number list>

Associated
keywords

GOSUB, GOTO, SElect ON

Note These constructs are supplied only for compatibility. SELect
ON should be used instead

D2-68

OPEN
OPEN IN

OPEN NEW

Type Device allocation procedures

Purpose To associate a channel with a device or file

Examples 40 OPEN_NEW #8, PRN open channel 8 to the
pri nter

50 OPEN #4, SCR_ 60 x 60 a 60 x 60 open channel 4 to screen,
creating a window size,
60 x 60 pi xelsat
position 60,60

OPEN #5, f_name$ open file whose name is
held in f_names

OPEN_IN #9, “MDV1—file.exp" open file MDV1_file.exp

OPEN_NEW #7, MDV1—data_file open file MDV1_data_file

OPEN #6, CON_240x200a240x0_32 open channel 6 to the
COHsole device creating a
window occupying the
right hand half of the
default window with a 32
byte keyboard type ahead
buffer

Description A function which attributes to a file -

OPEN - for reading only
OPEN IN - for reading only
OPEN^HEW - for writing only

If the channel is already associated with a device an implicit
close is performed.

For all devices other than microdrive files OPEN_IN and OPEN
NEW are treated as equivalent to OPEN and give whatever
access is available on the specified device i.e.

PRN - write only
SCR - write only
CON - read and wri te

D2-69

OPEN
OPEN IN

OPEN NtW

If the specified device is a microdrive file OPEN and OPEN IN
are equivalent: the file must already exist and is opened Tor
read access only. An individual file may be associated with
several read channels at the same time. If OPEN_NEW is
applied to an existing microdrive file it will report "already
exists", otherwise a file of the specified name is created and
opened for write access. Thus in TONTO BASIC, OPEN and OPEN IN
are equivalent for all devices.

Format OPEN X'channel number*, 'device specification*

Associated
keywords

CLOSE, PRINT, INPUT, INKEYSS

OR

Type BASIC operator

Purpose To form the logical inclusive OR of two truth values

Example If windy OR wet THEN stay_at_home

60 IF val > max OR val < min:PRINT "Invalid"

Description The two operands are treated as truth values, zero being
false, non-zero true. The result is 1 (i.e. true) if either or
both operands is true, 0 (i.e. false) if both operands are
false. To form the bitwise OR of two operands you should use
the operator ||

Format 'boolean expression* OR 'boolean expression*

Associated
keywords

AND, NOT, XOR

D2-7O

PAPER

Type Screen handling procedure

Purpose To change the paper (background) colour for all subsequent
characters written to the specified window channel

Example 10 PAPER 7
20 OPEN #9, CON 60x60al20x30 32
30 PAPER #9, 3 : CIS #9

Descri ption A procedure which changes the paper colour in the associated
wi ndow

Format PAPER [*<channel number*,]<colour code*

Associated
keywords

CLS, INK

Note Refer to pages B12-3 to B12-4 and C2-15 for the list of
possible colours

02-71

PAUSE

Type Timing command

Purpose To cause a program to wait for a specified period of time
(expressed in units of 20ms) or until a key is pressed

Examples PAUSE 50 wait 1 second or until a key is pressed

PAUSE 500 wait 10 seconds or until a key is pressed

200 PAUSE :REMark wait for a key depression

Description A procedure that executes as for INKEYS except that no value
is ever returned. If used with no parameter, the pause is
indefinite

Format PAUSE period*1

Associated
keyword

INKEYS

02-72

PEEK
PEE KJ/
PEEK L

Type Memory access functions

Purpose To inspect the contents of memory at a specified address

Examples PRINT PEEK J. (34578)

PRINT PEEK (seg3,4)

60 CALL srseg,2,parml :REMark start subroutine
70 cc%=PEEK_W(srseg,O) :REMark get completion code

Descri pt ion Functions giving access to system memory. The amount of memory
inspected is determined by the keyword used:

PEEK returns 1 byte
PEEK_W returns 2 bytes - address must be even
PEEK_L returns 4 bytes - address must be even

Format PEEK (‘-memory address^

Associated
keywords

CALL, LYBYTES, POKE, POKE J/, POKE_L, SEGMENT, SBYTES

PI

Type Mathematical function

Purpose To calculate the value for tt

Example PRINT PI

Description PI = 3.14159265

Format PI

D2-73

POKE
POKE_W
POKE L

Type Memory access procedure

Purpose To change the contents of memory at the given address

Examples POKE_L 131072, -1

70 POKE myseg, offset, value

Description Procedures which allow the contents of memory to be changed

POKE returns 1 byte
POKE_W returns 2 bytes
POKE_L returns 4 bytes

Format POKE <memory address>,<expressions

Associated
keywords

CALL, LBYTES, PEEK, SEGMENT, SBYTES

Note Poking of data into store is not recommended

D2-74

PRINT

Type Data output procedure

Purpose To transmit the required characters to a channel

Examples PRINT #3, ATAN (PI / 8)

PRINT ‘Hello’ ! nan»e$! ’How are you?’

30 OPEN #4,scr 240xl90a240x0
40 PAPER #4,5
50 INK #4,0
60 AT #4,10,2:PRINT #4,"This is Basic version ";VER$
70 AT #4,12,0:PRINT #4,a,b\c
80 CLOSE #4

Description A statement causing numeric and/or string values to be output
to a channel.

Separators

! Best viewed as an intelligent space. Its normal action
is to insert a space between items output on the screen.
If the item will not fit on the current line, a line
feed is generated. If the current print position is at
the start of a line, a space is not output. ! affects
the next item to be printed and therefore must be placed
in front of the print item being printed. Also you must
place a ; or a ! at the end of a print list if the
spacing is to be continued over a series of PRINT
statements

, BASIC tabulates output every 8 columns

\ Forces a new line

; Leaves the print head or cursor position immediately
after the last item printed. Unless action is taken
output is printed in one continuous stream

Format PRINT [#<channel number>,] IO liet\

02-75

PRINT

Associated
keywords

CLS, CSIZE, INPUT

PSES

Type Permanent store function

Purpose To return the string value contained in a permanent store
entry

Examples PRINT PSES(283)

60 PRINT "Program last run on"!PSE$(700)

Description A function returning the value of a permanent store entry

Format PSE$ (‘.numeric expression^

Associated
keywords

DELPSE, SET_PSE

02-76

PUBLISH

Type Program storage command

Purpose To save a BASIC program on microdrive cartridge in such manner
as to allow the file to be loadable via the application
selection menu

Example PUBLISH MDV2_super_prog

Description A special version of SAVE such that the program becomes
eligible for display on the application selection menu

Format PUBLISH <file specification*

Associated
keywords

SAVE, LOAD, MERGE, LRUN, MRUN

RAD

Type Mathematical function

Purpose To calculate an angle expressed in radians from an angle
expressed in degrees

Example PRINT RAD (45)

Description A function returning the value of its parameter multiplied by
PI, and divided by 180

Format RAD (tangle in degrees*)

Associated
keywords

ACOS, ACOT, ASIN, ATAN, COS, COT, DEG, SIN, TAN

02-77

RANDOMISE

Type Mathematical function

Purpose To allow the random number generator to be reseeded

Example 40 RANDOMISE :REMark resets the seed for the random number
generator

RANDOMISE 6 Sets the starting point for random number
generator

Description A function permitting the base for random numbers to be
changed. If no parameter is supplied, various internal values
are used

Format RANDOMISE [<nwneric expression>]

Associated
keywords

RND

Note If a constant is used as the parameter, the same sequence of
numbers will be returned by successive invocations of the RND
function

D2-78

READ

Type

Purpose

Examples

Description

Usage

Associated
keywords

Notes

Intrinsic BASIC command

To enable variables to assume the value of data items in an
embedded DATA statement

15 READ dx, dy, range, result

30 FOR side = 1 TO 2 : READ team$ (side), score (side)

70 DIM item(lO),menu$(10,16)
80 FOR i=l TO 10
90 READ item(i):READ menu$(i)
95 END FOR i
3000 DATA 1, “Create Cust“,2,"Amend Cust"
3010 DATA 3, “Delete Cust“,4,“Create Prod"
3020 DATA 5, “Amend Prod",6,"Delete Prod"
3030 DATA 7, "Enter Order",8,"Schedule Ord"
3040 DATA 9, "Enter Del",10,“Produce Invoice"

A command which causes the next item of a data list to be
copied into the variable(s) which follow

READ ‘.variable* j , ‘.variable*^

DATA, RESTORE

1 An implicit RESTORE is not performed when the program is
RUN

2 If variables are used as the operands of a data
statement, they must be assigned before the READ
statement is executed

D2-79

REMAINDER

Type Pseudo constant

Purpose To permit a SELect clause to cater for a response other than
those explicitly defined

Examples 90 SELECT ON var
100 ON var = 1 : PRINT "OK"
110 ON var = REMAINDER : PRINT ‘Error1

Description A pseudo constant which matches any value of a SELect
variable, other than those values previously specified

Format [ON <select variable*] = REMAINDER

Associ ated
keywords

END SELect, SELect

REMark

Type BASIC keyword

Purpose To allow insertion of explanatory text into a program

Examples 10 REMark *** This is a co ■went ***

20 REMark everything is ignored...stop

Description A keyword which permits the remainder of the line to be
ignored

Format REMark <anything*

Note A REMark statement is delimited only by the end of a logical
line. That is, a REMark statement must be the last of a line

D2-80

RENUH

Type BASIC command

Purpose To change the line numbers of a program such that all the
statements stay in the same order, and such that all
references are maintained

Examples RENUM 100 to 200 ; 10,1

RENUM

Descri ption A command which renumbers the lines of a user's program and
maintains most of the cross references within.

If there are expressed line numbers in the program

e.g. 120 RESTORE 300+30*severity

the system attempts to renumber only the first part of the
expression.

WARNING
You must never attempt to use RENUM to renumber program
lines out of sequences, that is to move lines about the
program.

Format RENUM [<first line>][T0 <last
[;[<neu firet line>][t<i.mrement>]]

02-81

REPeat

Type BASIC command structure

Purpose To define the start of a REPeat loop

Examples 300 REPeat loop

Description A statement which is the start of a REPeat...END REPeat
loop. REPeat can be used in both long and short forms:

Short

The REPeat keyword and loop identifier are followed on the
same logical line by a colon and a sequence of BASIC
statements. EXIT resumes normal processing at the next
logical line.

Example

REPeat wait: IF inkey$ < >"" THEN EXIT wait

Long

The REPeat keyword and the loop identifier are the only
statements on the logical line. Subsequent lines contain a
series of BASIC statements terminated by an END REPeat
statement.

The statements between the REPeat and the END REPeat are
repeatedly processed by BASIC.

Examples

10 LET nutrber = RNDtl TO 50)
20 REPeat guess
30 INPUT "What is your guess?", guess
40 IF guess = number THEN
50 PRINT "You have guessed correctly"
60 EXIT guess
70 ELSE
80 PRINT "You have guessed incorrectly"
90 END IF

100 END REPeat guess

D2-82

REPeat

10 OPEN_IN #6,MDVl_tranfile
20 REPeat readloop
30 IF EOF (#6) THEN EXIT readloop
40 INPUT #6,rec$
50 process record
60 END REPeaT readloop
70 CLOSE #6

COMMENT
Normally at least one statement in a REPeat loop is an EXIT
statement.

Format REPeat <loop identified

Associated
keywords

END, EXIT, FOR, NEXT

D2-83

RESTORE

Type BASIC command

Purpose To set the data pointer to a given line so that subsequent
READ statements will access data from that point

Examples 10 CLS : RESTORE :REHark make sure that data is available

30 RESTORE 200+Ski11*30 :REMark select required data line

Description A command which sets the data pointer to any selected DATA
line. If none is specified, the first DATA line in the
program is used

Format RESTORE [<£ine number>]

Associ ated
keywords

DATA, READ

Note RUN does not perform an implicit RESTORE; thus it is
possible to execute a program several times using different
DATA 1i nes

02-84

RETurn

Type Program control command

Purposes 1 To terminate a procedure and resume processing at the
statement after the call to the procedure

2 To terminate a function and define the value of the
expression which caused entry to the function

3 To terminate a subroutine and resume processing at the
statement after the GOSUB call which caused entry to the
subroutine

Examples 830 RETurn

540 RETurn (this_guess + last_guess) / 2

Description A command causing termination of a procedure, function or
subroutine. In the case of a function, the parameter defines
the value of the function.

COMMENT
It is not compulsory to have a RETURN in a procedure. If
processing reaches the END DEFine of a procedure, the
procedure returns automatically.

Format RETurn {.<expr>eeeion>^

Associ ated
keywords

DEFine, END, FuNction, PROCedure

D2-85

RETRY

Type Program control command

Purpose To allow a program to be resumed at the statement which was
last executed, typically after an error condition

Example RETRY

Description A command which restarts a BASIC program, re-executing the
last statement obeyed

Format RETRY

Associated
keywords

CONTINUE

D2-86

RND

Type Mathematical function

Purpose To generate a random number

Examples 30 chance = RND

PRINT RND(3 TO 27)

Description If no parameters are supplied, the result is a floating point
number in the exclusive range 0 to 1. If two parameters are
supplied, the result is an integer in the range bounded by
(and including) the parameters. If only one, the first is
assumed to be zero. The second parameter (rounded if need be)
must not be less than the first (rounded if need be)

Format RND [([<numeric expression> TO]<numeric expression*)]

Associated
keyword

RANDOMISE

Notes 1 If parameters are supplied, they must be in the range
-32768 to +32767

2 Any parameter is rounded to an integer before being used
and the range includes this integer

D2-87

RUN

Type BASIC command

Purpose To commence execution of a stored program

Examples RUN run from start

RUN 400 run from line 400

Description A statement causing BASIC to execute the current program

Format RUN [<nu7ner*ic expression*]

Associated
keywords

LOAD, LRUN, MRUN, RESTORE

SAVE

Type BASIC command

Purpose To permit saving of programs

Examples SAVE prn Print program on printer

SAVE mdvl_library TO 90 Save some lines of program

Description A procedure which saves program listings to any device

Format SAVE '.device specification* [_,<line ranges>]

D2-88

SBYTES

Type Memory access procedure

Purpose To allow saving of areas of memory to a device

Example SBYTES MDVl_screen, 131072, 32768

Description A procedure allowing image dumps of areas of TONTO memory

Format SBYTES <file specif ication> t‘.memory address >
,<area length>

Associ ated
keywords

LBYTES, PEEK, POKE, SEGMENT

SDATE

Type Clock procedure

Purpose To allow the TONTO internal clock to be set to a specific time

Examples SDATE 1977,»onth,l,0,0,0

120 SDATE 1984,6,14,10,28,0

Description A procedure which updates the TONTO clock according to the
value of its parameters

Format SDATE <-year>, <monch>, <day>, <hour>, <minute>, ‘second^

Associated
keywords

ADATE, DATE, DATES, DAYS

02-89

SEGMENT

Type Store management function

Purpose To allocate extra store to the BASIC user's program

Examples 150 LET Seg = SEGMENTS)

Description A function which returns the channel identifier of a free
segment. The segment size is defined (in 512 byte memory
blocks) by the supplied parameter

Format SEGMENT (expression*)

Associated
keywords

PEEK, POKE, CALL, LBYTES, SBYTES

02-90

SELect

Type BASIC command structure

Purpose To permit a multiway decision to be made according to the
value of a variable

Example 230 SELect ON choice

Descri ption A statement marking the start of a SELect...END SElect
construct. SELect can be used in both long and short forms:

Long

Allows multiple actions to be selected depending on the value
of a select variable. The select variable is the last item
on the logical line. A series of BASIC statements follows,
which is terminated by the next ON statement or by the END
SELect statement, which allows a catch all which responds if
no other select conditions are satisfied.

Example

10 LET error number = RND(1 TO 10)
20 SELect ON-error_number
30 ON error_number = 1
40 PRINT “Divide by zero"
50 LET error_number = 0
60 ON error number = 2
70 PRINT “File not found"
80 LET error_number = 0
90 ON errornumber = 3 TO 5

100 PRINT "Microdrive file not found"
110 LET error_number = 0
120 ON error number = REMAINDER
130 PRINT "Unknown error"
140 error recovery
150 END SELect

D2-91

SELect

Short

The short form of the SELect statement allows simple single
line selections to be made. A sequence of BASIC statements
follows on the same logical line as the SELect statement. If
the condition defined in the SELect statement is satisfied,
the sequence of BASIC statements is processed.

There is no END SELect statement.

Example

1 SELect ON test_data = 1 TO 10: PRINT “Answer within
range"

2 SElect ON answer = 0.00001 TO 0.00005: PRINT "Accuracy
OK"

COMMENT
The short form of the SELect statement allows ranges to be
tested more easily than with an IF statement. Compare
example 2 above with the corresponding IF statement.

Format SELect ON <numeric variable>

Associated END SELect, REMAINDER
keywords

Note The variable may not be a string variable or the value
returned by a function

02-92

SET-PSE

Type Permanent store procedure

Purpose To allow data to be stored and modified in the system’s
permanent store area

Examples SET_PSE 500, 'effort*

340 SET_PSE last—used, DATE

Descri ption A procedure which stores a string value of up to 255 bytes in
the TONTO permanent store

Format SET—PSE <entry number> t<sbring value>

Associ ated
keywords

DEL—PSE, PSE$

Note Do not set entries 0 to 255. These are reserved for system use

D2-93

SIN

Type Mathematical function

Purpose To calculate the sine of an angle

Examples PRINT SIN (RAD(90))

11 LET Erx = ABS(Angle - ATAN(SIN(Angle)/COS(Angle)))

Description A function returning the sine of its parameter which is in
radian measure

Format SIN ('-angle in radians>

Associated
keywords

ACOS, ACOT, ASIN, ATAN, COS, COT, DEG, RAD, TAN

SQRT

Type Mathematical function

Purpose To calculate the square root of a non-negative number

Examples PRINT SORT (3)

LET C = SORT (A*A + B*B)

Description A function returning the square root of its parameter

Format SQRT ('-numeric expression*} range > = 0

D2-94

STEP

Type BASIC operator

Purpose Part of the FOR...END FOR loop construct. STEP indicates
the control variable increment value

Example 10 FOR I = 2 TO 100 STEP 2: PRIMT I Prints the even numbers
from 2 to 100

Description Part of the FOR...END FOR construct. STEP is optional

Format STEP <numeric expression^

Associated
keywords

END FOR, EXIT, FOR

Notes This keyword never appears on its own

When STEP is omitted, an increment of 1 is used

STOP

Type Program control command

Purpose To terminate execution of a program and return BASIC to
command interpreter mode

Example 900 STOP

Descri ption A procedure causing execution of a program to cease

Format STOP

Associ ated
keyword

BYE

D2-95

TAN

Type Mathematical function

Purpose To calculate the tangent of an angle given in radians

Examples 100 value = TAN (PI / 16)

Description A function returning the tangent of its parameter

Format TAN (<angle in radians'*}

Associ ated ACOS, ACOT, ASIN, ATAN, COS, COT, DEG, RAD, SIN
keywords

THEN

Type BASIC command separator

Purpose A keyword used within an IF construct to indicate the
required course of action if the condition is TRUE

Example IF A>B THEN PRINT ‘Bigger*

Description An optional part of the IF...THEN...ELSE...END IF construct

Format THEN ‘-statement

Associated IF, ELSE, END IF
keywords

Note This keyword never appears on its own

D2-96

TO

Type BASIC separator

Purpose To separate two numeric values in a range of numbers implying
that all numbers in that range are to be considered

Examples FOR I = 1 TO 200 : PRINT I

LET sub$ = whole$(4 TO 7)

Descri ption A separator usable with numeric range expressions

Format <nwneri.c valued TO <rtumer*ic value*

Associ ated
keywords

FOR, SELect

D2-97

UNDER

Type Screen handling procedure

Purpose To set or reset underlining of all subsequent characters
output to the specified screen channel

Examples UNDER 1 Turn underlining on

100 OPEN #4,scr 480x20a0,0 :REMark title screen
105 CLS #4
110 CSIZE 14,3,1
115 PRINT #4,FILL$(" ",1D;
120 UNDER f4,l
130 PRINT #4,"Generate Invoices"

Description A procedure which changes the defined window attributes in
respect of underlining

Format UNDER [#<channel number> ,l<cuitch>

where : <switch> = 0 underlining off
<suri.tch> = 1 underlining on

VERS

Type BASIC function

Purpose To return a two character string indentifying the version of
the interpreter

Examples PRINT VERS

120 IF VERS <> ’02’ THEN PRINT ’Wrong version’

Description A function returning a fixed two character string as its
result

Format VERS

D2-98

WIDTH

Type Device control procedure

Purpose To set a nominal page width of a device other than CON or
SCR

Examples 110 WIDTH #7,120 : PRINT a$! b$! c$

Description A statement controlling the overall output field width

Format WIDTH [#<channel number> ,~]<nujrieric expression^

Notes The current value of WIDTH has no effect other than in the
treatment of * in PRINT and INPUT statements. Following
the separator !, the next item output will start on a new line
if it would otherwise cause the current line to exceed the
specified width for the current channel

D2-99

WINDOW

Type Screen handling procedure

Purpose To permit the changing of position and size of a screen window

Examples WINDOW #2, 480, 80, 0, 120 Reduce the size of the listing
wi ndow

10 WINDOW 60, 60, 0, 0

Description A procedure allowing the definition of a screen window. The
coordinates are expressed in character multiples of pixel
coordinates and are rounded to the nearest multiple of
character size, which is 6 pixels wide and 10 pixels high.
Thus coordinates of 22, 22 are rounded to 24, 20

Format WINDOW [ft'-channel number*, <height>, <x>, <y>

Associated
keywords

AT, CLS, CSIZE, INK, PAPER

D2-1OO

XOR

Type BASIC operator

Purpose To calculate the logical exclusive OR of two operands

Example 100 IF (bound_a < 0) XOR (bound_b < 0) THEN
110 PRINT "Range includs zero"
120 END IF

Description The two operands are treated as truth values, zero being
false, non-zero truth. The result is 0 (i.e. false) if both
operands are false or both operands are true, 1 (i.e. true) if
the two operands have different truth values. To form the
bitwise XOR of two operands you should use the operator

Format <boolean expression XOR 'boolean expression

Associated
keywords

AND, NOT, OR

D2-1O1

Appendix 1 TONTO BASIC Syntax

This appendix defines TONTO BASIC syntax using a form of the
Backus-Naur Form (BNF).

Notes:

::= indicates that the expression on the left hand side
of the ::= sign consists of zero or more items on the
right hand side;

| indicates that the items thus separated are
alternatives; that is to say that one (and only one) of
them must be present;

{^denotes possible repetition of the enclosed symbols
zero or more times; this means that

A ::= B

is only a simple form of

A ::= <empty> | B | BB | BBB |

the square brackets denote possible repetition of the
enclosed symbols zero times or once only; this means
that

A ::= B [C] [D]

is only a simpler form of

A ::= B | BC | BD | BCD

limits on values are specified in the form range x to y.

Note that the symbols used (::= | < > [and]) are
meta-symbols belonging to BNF, and are not symbols of the
BASIC language.

<angle in degrees> := <numeric expression

<angle in radians> := <numeric expression

<anything> := (No syntax; terminated by line­
feed)

<area length> := <integer expression

<arithmetic operator> : = +|-|(|/|*|MOD|OIVP

<array> := <variable> | <array element>

<array element> := <variable> (<expression^
, expression)

<binary operator> := comparison operator> \ <arithmetic
operator>\<bitstring operator> |
<boolean operator>\<string
operator>

<bitstring operator> := <s<s|:: |

<boolean expression := <integer expression range 0 to 1

<boolean operation : := OR | XOR | AND

<channel number > : := <integer expression range 0 to
15

dock value> = <integer expression

colour code> = <integer expression range 0 to 7

column = <integer expression

<comparison operator> = =l==l<l>l>=l<=l<>

condition = <boolean expression

<day> = <integer value> range 1 to 31

<device specification = <integer>\<string expression

<digit> = 0| 1|2 j3|415 |6| 718,9

<dimension = <integer expression

<dimension number> = <integer expression

<direct command> - <BASIC command>

a2

< du rat ion := <integer expression range 0 to
255

enclosed string> := '^<any character except‘>^'

<entry number > := <integer expression range 0 to
65535

expression := <term* \(<expression*) \<expression>
<binary operatorxexpression

<file specification := <device specification

<first line> : = <line number>

<for range> := <range> [STEP <numeric expression]

<frequency* := <integer expression range 0 to 255

<function name* := <variable*

<function result* := <function name>[(<expression^,
<expression>\)]

<heiaht> := <integer expression range 5 to 240

<height code* := <integer expression range 0 to 1

<high bound* := <nume-ric expression

<hour> := <integer expression range 0 to 23

<identifier* := <letter>^<letter>\ <digit> |
<underscore>

<increment> := <integer expression range 1 to
32767

<integer expression : = expression range -32768 to
32768 unless explicitly stated
otherwi se

<integer variable* := <integer>%

<10 list* := [expression Sprint separator>
expression^

<last line* := <line number>

<letter* ::= A|B|C|D|EjZ ja jb |c jd|e |..........|z

a3

<line number>

<line number list>

<line range>

<line ranges>

<loop identifier

<loop variable>

<low bound>

<memory address>

::= <expression> range 1 to 32767

::= <line number^, <line number^

::= [<line number]
[TO <line number!
[<line nunber>T0]

: := <line range> £ , <line range>^

::= <identifier>

= <identifier>

::= <numeric expression

::= <expression> I<segment identifier,
<off set >

<minute> : := <integer expression range 0 to 59

<month> : := <integer expression range 1 to 12

<new first line> : := <line number

<numeric expression : := expression

<numeric variable> : := <variable>

<offset> : := expression range 0 to segment_
size -1

<one or two character :
string>

*= etring expression

<TONTO program name> : - <identifier>

<parameter> : = <identifier>

<print separator :

<procedure name> : = <identif ier

<quoted string> : = "^<any character except">^"

<range> = <low bound [TO <high bound>!

<register value> : - <integer expression

<repeat count> : = <integer expression

a4

<required values> : := <for range>£, <for range>^

< row> : := <integer expression

<search key> : := <integer expression range 0 to 3

<seconds> : := <integer expression range 0 to 59

<section> : := <integer expression

<segment identifier : := < numeric expression

<select list> : := <Iod bound> [TO <high bound>] |
<lou) bound> TO | TO <high bound>

<slice> : := <variable> (<select list>)

<statement> : := <BASIC statement>

<string> : := <enclosed string> <quoted string>

<string expression : := <expression>

<string operator : := & |INSTR

<string value> : := <string expression

^string variable> : := <identifier>

<suitch> : := <integer expression range 0 to 1

<term> := <value>\ <unary operaytor <value>

<unary operator : := +| -|””|NOT

<underscore> :

^unsigned constant> : := <unsigned integer|<unsigned real>
<string constant>

<unsigned decimals : := <unsigned integer \<unsigned
integer. [<unsigned integer} |
. <unsigned integer

<unsigned integer : := <digit>\fdigit>^

<unsigned real> : := <unsigned decimal> \<unsigned
decimal> [E +|-] <unsigned
integer

untyped variable> : := <identifier>

a5

<value>

<variable>

<wait period>

<uidth>

<width code>

<year>

::= <unsigned constant>\<variable> |
<array element>l<slice>\ <function
result>

::= <untyped variable> \<integer
var*iable> |<string variable>

::= <integer expression

::= <integer expression range 3 to 480

: := <integer expression range 0 to 3

: := <expression> range 0 to 474

::= <expression> range 0 to 230

: := <integer expression range 1970
to 2069

Appendix 2
w o r d s

T 0 N T 0 BASIC reserved

Reserved words are words which have a particular meaning for
TONTO BASIC. Use of them in the wrong context (for example, as
identifiers) is likely to cause errors or unpredictable
results.

The full list of reserved words is given below; it includes
all current keywords, all keywords reserved for future use and
a few other words which are meaningful to BASIC.

Where a reserved word is printed in partly upper and partly
lower case, it means that the upper case part is itself a
reserved word, as are all words starting with the upper case
part followed by consecutive letters from the lower case part,
up to the whole word. Thus, in the case of ERRor,

ERR
ERRo
ERRor

are all reserved words. The actual case used at the TONTO
keyboard is of course irrelevant, except that case in
filenames is meaningful.

a7

ABS CODE ELSE I NT

ACOS CONTINUE END KEYROW

ACOT COPY EOF LBYTES

AD ATE COPY_N ERLin LEN

ALL COS ERNum LET

AND COT ERRor LINE

ARC CSIZE EXEC LINE_R

ARC_R CURSOR EXEC_W LIST

ASIN DATA EXIT LN

AT DATE EXP LOAD

ATAN DATES FILL LOCAL

AUTO DAYS FILLS LOG1O

BAUD DEFine FLASH LRUN

BEEP DEG FOR MERGE

BEEPING DELETE FORMAT MISTake

BLOCK DEL_PSE FUNction MOD

BORDER DIM GO MODE

BYE DIMN GOSUB MOVE

CALL DIR GOTO MRUN

CHRS DIV IF NET

CIRCLE OLINE INCLUDE NEW

CIRCLE_R DRAW INK NEXT

CLEAR EDIT INKEYS NOT

CLOSE ELLIPSE INPUT ON

CLS ELLIPSE—R INSTR OPEN

0PENJN POKE_L RETRY STOP

aS

OPEN_NEW POKE_W RETurn STRIP

OR PRINT RND SUB

OVER PROCedure RUN TAN

PAN PUBLISH SAVE THEN

PAPER PSES SBYTES TO

PAUSE RAD SCALE TRACE

PEEK RANDOMISE SCROLL TURN

PEEK_L READ SDATE TURNTO

PEEK_W RECOL SEGMENT UNDER

PENDOWN REMAINDER SELECT VERS

PENUP REMark SET_PSE WHEN

PI RENUM SEXEC WIDTH

POINT REPeat SIN WINDOW

POINT-R REPORT SQRT XOR

POKE RESTORE STEP

a9

Appendix 3 Transferring data
between applications

BASIC provides the ability to create, read and write files on
microdrive cartridges. Other applications, notably those in
XChange, also create and process such files, and it is
therefore possible to exchange data between these applications
via microdrive files, provided both partners in the exchange
understand the layout and content of the data.

BASIC can be used to create two kinds of file. A file written
using SAVE or PRINT statements consists of lines. Each line is
a string of characters terminated by the line-feed character.
The last line may be followed by a single character with the
code 26 (CTRL/Z). A file written using SBYTES is a binary copy
of the specified area.

BASIC normally deals with file names that have the same form
as a BASIC identifier. For example

SAVE mdvl_Program_l

A filename may also be specified as a string expression, thus

SAVE "mdvl_Program_l“
f$ = "mdvl_Program_l" : SAVE f$
p$ = "Program" : SAVE "mdvl_" & p$ & 1

This method of naming files may be necessary when dealing with
files created by, or to be read by, non-BASIC applications. In
particular, XChange filenames have the form

<identifier>.<extension>

and must always be identified to BASIC in the string form, for
example,

0PEN_NEW #6,“mdvl_XCfile.exp'‘ : REM create a file for
input to XChange

COPY “mdv2_datafile.exp" TO scr : Copy an XChange file to
the screen

all

Index

A ABS 02-1
Absolute value B9-4
ACOS D2-1
ACOT D2-2
Actual parameters B7-6 C2-29
ABATE 02-3
Alphabetical comparisons B8-1
AND B10-1 D2-4
Apostrophe B2-10 B12-1
Array

parameters B16-8
slicing B13-7
vari ables 87-3

Arrays
DIM statement B6-2 C2-1 02-32
numeric B13-2
REPEAT statement 02-82
string B6-2 B6-5 B13-3 C2-49
two-dimensional B13-5 '

ASIN 02-4
Assignment of strings Bll-1
AT 02-5
ATAN D2-6
AUTO 02-7
Automatic line numbering 85-2

B Backslash B3-4 88-8 B12-1
BASIC

features & facilities Al-2 88-16
syntax Al-2
TONTO 88-1 B8-14
versions/dialects Al-1 88-1 C2-2
vocabulary Al-1

BEEP 02-8
BEEPING 02-9
Binary decisions B14-8
BREAK sequence C2-18
BYE 02-9

1-1

c CALL 02-10
Capital letters Bl-3
Caps lock Bl-4
Cartridges, care of B5-8 C2-35
Channel s B5-7 C2-3
Character

set and keys C2-5
si ze B12-5
strings B3-1

CHRS 02-11
CLEAR 02-12
Clear

screen B12-4 02-14
wi ndow B12-4 02-14

Clock C2-12
CLOSE 02-13
Close channel B5-7
CLS 02-14
CODE 02-15
Coercion B8-3 Bll-3 C2-13
Colon B8-5
Colour tones B8-6 B12-3 C2-15
Comma B8-8 B12-1
Conditional expression B4-3
Condi tions B4-3
CONTINUE 02-16
COS 02-18
COT 02-18
CSIZE 02-19
Cursor controls C2-17

o Data C2-16
Data files, sequential B16-2
DATA statement B2-13 D2-20
Data types

floating point 89-2 C2-19
integer B9-3 C2-19
logical 89-2
string B9-2 C2-19

DATE D2-21
DATES D2-22
DAYS D2-23
Decision making B8-12

1-2

E

Decisions
bi nary
multiple

B14-8
B14-10

DEFi ne
FUNction D2-25
PROCedure D2-27

DEG D2-29
OELete Bl-5 C2-18 D2-30
Delete program lines B2-10
DELJ>SE D2-31
DevTces B5-8 C2-21

CLOSE D2-13
LBYTES D2-57
LOAD D2-60
MERGE D2-63
MR UM D2-65
OPEN D2-69

Dimensioning arrays B13-1 C2-1
DIM statement B6-2 C2-1 D2-32
DIMM statement D2-33
Direct command C2-24
DIV D2-34
OLINE D2-34

EDIT
Editing a line
Editinq programs
ELSE
END

DEF i ne
EOF
FOR
IF
REPeat
SELect

End of file
ENTER
EOF
Equals
Error

handli ng
recovery

Examining programs
LIST

Exclamation mark

D2-35
B5-3
B2-9
D2-37

D2-38
D2-41
D2-39
D2-39
D2-40
02-40
B2-13 D2-84
B5-2
02-41
B2-5

Al-2 C2-25
C2-27

B5-5 D2-59
B8-8

1-3

EXIT B8-9 D2-42
EXP D2-42
Exponential function B9-2
Expressions

numeric B9-6
string B3-1 Bll-1

FILLS D2-43
Files

character B16-3
data B16-4
numeric B5-6 B16-2
reading B16-4
sequential B16-2
setting up B16-4

Floating point B8-3 B9-2 C2-19
FOR

EXIT 02-42
long form D2-44
loop B6-4
NEXT D2-66
short form D2-44

Formal parameters B7-6 C2-29
FuNction

RETURN D2-85
Functions B15-5 C2-29

LOCAL B15-3
numeric B9-3

GOSUB
GOTO

C2-2
B4-1

02-46
C2-2 02-47

Identifiers B2-7 B9-1 C2-31
IF

ELSE 02-37
ENO IF 02-39
long form 02-49
nesting B8-13
short form 02-48
THEN B8-12 02-96

INCLUDE 02-51

1-4

INK B12-4 D2-52
INKEYS
Input

D2-53

INPUT B2-11 D2-54
READ D2-79
DATA D2-20
/output B2-10 B8-8

Inserting program lines B2-9
Insertion sort B16-5
INSTR D2-56
I NT
Integer

D2-57

data type B9-3 C2-19
vari ables B8-3

I/O B2-10

J Joining strings Bl 1-1

K Keyboard Bl-2
Keyword B2-2
keywords C2-32

L Layout of screen 81-1 B8-7 B12-2
LBYTES 02-57
LEN D2-58
Length 02-58
LET statement 82-2 B8-5 D2-58
LIST statement 02-59
Listing programs 85-5
LN 02-59
LOAD statement 02-60
Loading

from microdrives 85-4
LOAD 02-60
MERGE 02-63
MRUN 02-65
programs 85-5

LOCal
in function 02-61
in procedure 02-61
vari ables 02-61

1-5

LOG 10
Logic

02-62
Sec.BIO

Logical
expression B10-1
operators B10-1
vari ables B8-4 B9-8

Loop epilogue B14-5
Loops

FOR B6-4 02-44
nested B8-10 B14-I
REPeat B8-9 D2-82

Low resolution mode B8-6 B12-3
LRUN 02-62

Main program B7-4
Maths functions C2-34

ABS 02-1
ACOS D2-1
ACOT 02-2
ASIN 02-4
ATAN 02-6
COS 02-18
COT 02-18
EXP 02-42
I NT 02-57
LN 02-59
LOG 02-62
SORT 02-94
TAN 02-96

MERGE statement 02-63
Merging programs B5-5
Microdrive C2-35

DELete 02-30
file B5-6
LOAD 02-60

MISTake 02-64
MOD D2-64
Mode 88-6
Modulari ty 87-1
MRUN 02-65
Multiple decisions B14-10

1-6

N Naming programs
REMark statement D2-8O

NEW D2-65
NEXT

defini tion B14-4
FOR 02-66
in FOR 02-44
REPeat 02-82

NOT BIO-3 D2-67
Numeric

arrays B13-2
expressions B9-6
functions B9-3
operations B9-4

0 ON GOSOB
ON GOTO

02-68
02-68

OPEN
channel 02-69
file B5-6
WINDOW B12-4

OPEN IN 02-69
OPEN_NEW 02-69
Operations, logical Sec.BIO
Opera tors C2-36

AND BIO-1 D2-4
1ogical BIO-1
NOT and brackets B10-3 02-67
OR B10-2 02-70
order of priority BIO-5
XOR - exclusive OR 02-101

OR B10-2 02-70
Output

PRINT B2-10 02-75
screen Sec.BIZ

p PAPER 812-3 02-71
Parameters

actual B7-6 C2-29
array B16-8
formal B7-6 C2-29

1-7

type of
typeless
value
vari able

PAUSE
PEEK
PE EKJ.
PEEK_W
PI
Pigeon holes
Pixel coordinates
Pixels
POKE
POKE L
POKE J/
PRINT
Print

to channel
to screen
to printer

Printing, special
CSIZE

Print separators
apostrophe

comma
exclamation mark
semi colon

PRN
Priorities of logical operators
PROcedure

defini tion
RETURN

PROcedures
LOCAL
passing information to
use of

Programming techniques
Program

analysis and design
editing
naming and saving a
stored
structure

Programs
examining

B7-6
B15-12
B15-1
B15-4
D2-72
02-73
02-73
02-73
02-73
B2-1 B3-1
C2-39
B8-6
D2-74
D2-74
02-74
B2-10 02-75

C2-23
B12-3
C2-23

B12-5 02-19

B12-1

B12-1
B12-1
B12-1
C2-23
B10-5

B7-1
02-85

D2-61
B7-5
B7-2 C2-29
B5-2

B7-3
B2-9
B5-4 D2-80
B2-8
Sec.B14

B5-5

1-8

load!ng B5-5
mergi ng B5-5
naming B5-4
saving B5-4

PSES D2-76
PUBLISH D2-77

0 Quotes, use of Bl-7 B3-2

R RAD D2-77
Random characters B7-5
RANDOMISE D2-78
READ statement B2-12 D2-79
REMAINDER D2-80
REmark statement B5-2 D2-80
RENUM D2-81
REPeat

EXIT D2-42
long form D2-82
NEXT D2-65
short form D2-82

Repeti tion
EXIT D2-42
FOR D2-44
REPeat D2-82

Replacing program lines B2-9

RESTORE B2-13 D2-84
RETRY D2-86
RETURN C2-17

in FuNction D2-85
in PROCedure D2-85

RND D2-87
RUN D2-88
Running programs D2-88

S SAVE D2-88
Saving programs B5-4
SBYTES D2-89
SDATE D2-89
Scope of variables B15-13
Screen

clear B12-4 D2-14

1-9

-49

-2
edi tor B2-9 B5-3
layout Bl-1 B8-7 B12-
mode B8-6
organ!sation B8-7
output Sec.B12
pi xel s B8-6

Screen commands
CLS B12-4 D2-14
INK 02-52
PAPER 02-71
UNDER 02-98
WINDOW 02-100

SEGMENT C2-43 02-90
SElect

END 02-40
long form B14-12 02-91
short form B14-12 02-92

Semi-colon 88-8
Sequential data files B16-2
Shift Bl-3
SET PSE 02-93
Simulation of card playing B16-1
SIN 02-94
Sound

BEEP C2-45
Space Bl-4
SORT 02-94
Square root B9-4
Starting programs 02-88
Start up C2-46
Statement 02-48
STEP B8-10 02-95
Stored programs 82-8
STOP 02-95
String

arrays 86-5 B13-3 02
assignment Bll-1
compari son Bll-6 02-50
functions Sec.Bll
variables B3-2 02-49

Strings
character B3-1
comparing 811-6
joining of Bll-1
length of B3-3
searching Bll-5

1-10

si icing
String slice

copy i ng
replacing

Subroutines
GOSUB

Syntax definition

Bll-2

Bll-2
Bll-3

B8-13 D2-46
Al-2 Sec.D

TAM D2-96
THEN D2-96
TO D2-97
Two-dimensional arrays B13-5
Type

of data Sec.B9
of parameters B7-6

Typeless parameters B15-12

U UNDER D2-98
Underl ine B12-5

V Value parameters B15-1
Variable parameters
Vari ables

B15-4

floating point B9-2
i nteger
1ogical

B8-3 B9-3
B9-8

numeric B9-3
scope of
string

B15-3
B3-2 B9-8

VERS 02-98

W WIDTH
WINDOW

02-99

clear B12-4
CLS B12-4 02-14
CSIZE 02-99

Windows
WINDOW C2-51 02-100

X XOR D2-101

1-11

